在 NumPy 中将存储索引位置设置为对应值,并将超出范围的索引裁剪到范围内


要将存储索引位置设置为对应值,请在 NumPy 中使用 **ma.MaskedArray.put()** 方法。“**mode**” 参数指定超出范围的索引的行为方式。为 indices 中的每个 n 设置 self._data.flat[n] = values[n]。如果 values 比 indices 短,则它将重复。如果 values 有一些掩码值,则初始掩码将相应更新,否则相应的将取消掩码值。

索引是目标索引,解释为整数。mode 指定超出范围的索引的行为方式。'raise':引发错误。'wrap':环绕。'clip':裁剪到范围内。

步骤

首先,导入所需的库 -

import numpy as np
import numpy.ma as ma

使用 numpy.array() 方法创建包含 int 元素的数组 -

arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度 -

print("
Array Dimensions...
",arr.ndim)

创建一个掩码数组并将其中一些标记为无效 -

maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度 -

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状 -

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素数量 -

print("
Elements in the Masked Array...
",maskArr.size)

要将存储索引位置设置为对应值,请在 NumPy 中使用 ma.MaskedArray.put() 方法。“mode” 参数指定超出范围的索引的行为方式。值为 'raise':引发错误。'wrap':环绕。'clip':裁剪到范围内。我们在这里设置了一个超出范围的索引,即 32。“clip” 参数将裁剪到范围内 -

maskArr.put([1, 5, 25, 27, 8],[99, 88, 33, 55, 66], mode = 'clip')
print("
Result...
",maskArr)

示例

# Python ma.MaskedArray - Set storage-indexed locations to corresponding values and clip out-of-bounds indices to range

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Numpy # The "mode" parameter specifies how out-of-bounds indices will behave. # The value ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range. # We have set an out-of-bounds indice here i.e. 32 # The "clip" parameter will clip to range maskArr.put([1, 5, 25, 27, 8],[99, 88, 33, 55, 66], mode = 'clip') print("
Result...
",maskArr)

输出

Array...
[[55 85 59 77]
[67 33 39 57]
[29 88 51 37]
[56 45 99 85]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[-- -- 59 77]
[67 33 -- 57]
[29 88 51 --]
[56 -- 99 85]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 4)

Elements in the Masked Array...
16

Result...
[[-- 99 59 77]
[67 88 -- 57]
[66 88 51 --]
[56 -- 99 55]]

更新于: 2022年2月2日

86 次浏览

启动您的 职业生涯

通过完成课程获得认证

开始学习
广告