返回一个由掩码数组的元素组成的数组,但在 NumPy 中裁剪范围
要返回一个由给定索引处的掩码数组的元素组成的数组,请使用 **ma.MaskedArray.take()** 方法。"**clip**" 模式使用 "**mode**" 参数设置。
take() 方法返回的数组与数组具有相同的类型。indices 参数是要提取的值的索引。axis 参数是选择值的轴。默认情况下,使用扁平化的输入数组。如果提供 out 参数,结果将放置在此数组中。它应该具有适当的形状和 dtype。请注意,如果 mode='raise',out 始终被缓冲;为了获得更好的性能,请使用其他模式。
mode 参数指定越界索引的行为方式。
‘raise’ - 抛出错误(默认)
‘wrap’ - 环绕
‘clip’ - 裁剪到范围
‘clip’ 模式意味着所有过大的索引都将被指向该轴上最后一个元素的索引替换。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建一个包含整数元素的数组:
arr = np.array([[49, 85, 45], [67, 33, 59]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
创建一个掩码数组并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素数量:
print("
Elements in the Masked Array...
",maskArr.size)
给定的索引,即要提取的值的索引。我们在这里设置了一个索引,即越界索引:
indices = [4, 5, 8, 13, 25]
要返回一个由给定索引处的掩码数组的元素组成的数组,请使用 take() 方法。"clip" 模式使用 "mode" 参数设置。'clip' 模式意味着所有过大的索引都将被指向该轴上最后一个元素的索引替换:
print("
Result...
",np.take(maskArr, indices, mode='clip'))
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...", arr) print("Array type...", arr.dtype) # Get the dimensions of the Array print("Array Dimensions...",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("Our Masked Array", maskArr) print("Our Masked Array type...", maskArr.dtype) # Get the dimensions of the Masked Array print("Our Masked Array Dimensions...",maskArr.ndim) # Get the shape of the Masked Array print("Our Masked Array Shape...",maskArr.shape) # Get the number of elements of the Masked Array print("Elements in the Masked Array...",maskArr.size) # The given indices i.e. the indices of the values to extract # We have set an index here i.e, out-of-bounds indices = [4, 5, 8, 13, 25] # To return an array formed from the elements of a masked array at the given indices, use the take() method # The "clip" mode is set using the "mode" parameter # ‘clip’ mode means that all indices that are too large are replaced by # the index that addresses the last element along that axis print("Result...",np.take(maskArr, indices, mode='clip'))
Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.
输出
Array... [[55 85 68 84] [67 33 39 53] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 68 84] [67 33 -- 53] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result... [67 33 29 -- 85]
广告