返回NumPy中掩码数组元素的标准差
要返回掩码数组元素的标准差,请在Python NumPy中使用**ma.MaskedArray.std()**。返回标准差,这是衡量分布分散程度的指标。默认情况下,标准差是针对扁平化数组计算的,否则是在指定的轴上计算。
axis参数是计算标准差的轴或轴集。默认情况下,计算扁平化数组的标准差。如果这是一个整数元组,则会对多个轴执行标准差,而不是像以前那样对单个轴或所有轴执行。
dtype是用于计算标准差的类型。对于整数类型数组,默认值为float64;对于浮点类型数组,它与数组类型相同。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素个数:
print("
Elements in the Masked Array...
",maskArr.size)
要返回掩码数组元素的标准差,请在NumPy中使用ma.MaskedArray.std():
res = maskArr.std() print("
Result..
.", res)
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 68, 84], [67, 33, 39, 53], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return the standard deviation of the masked array elements, use the ma.MaskedArray.std() in Numpy res = maskArr.std() print("
Result..
.", res)
输出
Array... [[55 85 68 84] [67 33 39 53] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 68 84] [67 33 -- 53] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result.. . 21.74153202688424
广告