设置存储索引位置为对应值,并在NumPy中处理越界索引


要将存储索引位置设置为对应值,请在Python NumPy中使用**ma.MaskedArray.put()**方法。为indices中的每个n设置self._data.flat[n] = values[n]。如果values比indices短,则会重复。如果values包含一些掩码值,则初始掩码会相应更新,否则相应的数值将被取消掩码。

索引是目标索引,解释为整数。mode指定越界索引的行为方式。“raise”:引发错误。“wrap”:循环。“clip”:剪切到范围。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用numpy.array()方法创建一个包含int元素的数组:

arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度:

print("Array Dimensions...
",arr.ndim)

创建一个掩码数组,并将其中一些标记为无效:

maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状:

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素个数:

print("
Elements in the Masked Array...
",maskArr.size)

要将存储索引位置设置为对应值,请在NumPy中使用ma.MaskedArray.put()方法。“mode”参数指定越界索引的行为方式。值为“raise”:引发错误。“wrap”:循环。“clip”:剪切到范围。我们在这里设置了一个越界索引,即32。“wrap”参数将循环:

maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap')
print("
Result...
",maskArr)

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Numpy # The "mode" parameter is specify how out-of-bounds indices will behave. # The value ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range. # We have set an out-of-bounds indice here i.e. 32 # The "wrap" parameter will wrap around maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap') print("
Result...
",maskArr)

输出

Array...
[[55 85 59 77]
[67 33 39 57]
[29 88 51 37]
[56 45 99 85]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[-- -- 59 77]
[67 33 -- 57]
[29 88 51 --]
[56 -- 99 85]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 4)

Elements in the Masked Array...
16

Result...
[[66 99 59 77]
[67 88 33 57]
[29 55 51 --]
[56 -- 99 85]]

更新于:2022年2月5日

147 次浏览

启动你的职业生涯

完成课程获得认证

开始学习
广告