设置存储索引位置为对应值,并在NumPy中处理越界索引
要将存储索引位置设置为对应值,请在Python NumPy中使用**ma.MaskedArray.put()**方法。为indices中的每个n设置self._data.flat[n] = values[n]。如果values比indices短,则会重复。如果values包含一些掩码值,则初始掩码会相应更新,否则相应的数值将被取消掩码。
索引是目标索引,解释为整数。mode指定越界索引的行为方式。“raise”:引发错误。“wrap”:循环。“clip”:剪切到范围。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含int元素的数组:
arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("Array Dimensions...
",arr.ndim)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素个数:
print("
Elements in the Masked Array...
",maskArr.size)
要将存储索引位置设置为对应值,请在NumPy中使用ma.MaskedArray.put()方法。“mode”参数指定越界索引的行为方式。值为“raise”:引发错误。“wrap”:循环。“clip”:剪切到范围。我们在这里设置了一个越界索引,即32。“wrap”参数将循环:
maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap') print("
Result...
",maskArr)
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Numpy # The "mode" parameter is specify how out-of-bounds indices will behave. # The value ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range. # We have set an out-of-bounds indice here i.e. 32 # The "wrap" parameter will wrap around maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap') print("
Result...
",maskArr)
输出
Array... [[55 85 59 77] [67 33 39 57] [29 88 51 37] [56 45 99 85]] Array type... int64 Array Dimensions... 2 Our Masked Array [[-- -- 59 77] [67 33 -- 57] [29 88 51 --] [56 -- 99 85]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 Result... [[66 99 59 77] [67 88 33 57] [29 55 51 --] [56 -- 99 85]]
广告