在 NumPy 中返回掩码数组沿轴 1 的最大值的索引数组


要返回最大值的索引数组,请在 Numpy 中使用 **ma.MaskedArray.argmax()** 方法。axis 参数用于设置轴值。

对于 axis,如果为 None,则索引进入扁平化数组,否则沿指定的轴。out 是可以将结果放置其中的数组。它的类型被保留,并且必须具有正确的形状以容纳输出。

掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值均无效,要么是布尔值数组,用于确定关联数组的每个元素的值是否有效。

步骤

首先,导入所需的库 -

import numpy as np
import numpy.ma as ma

使用 numpy.array() 方法创建一个包含整数元素的数组 -

arr = np.array([[49, 85, 45], [67, 33, 59]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

获取数组的维度 -

print("Array Dimensions...
",arr.ndim)

创建一个掩码数组并将其中一些标记为无效 -

maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度 -

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状 -

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素数量 -

print("
Elements in the Masked Array...
",maskArr.size)

返回最大值的索引数组,使用 ma.MaskedArray.argmax() 方法。掩码值被视为具有值“fill_value”。“fill_value”是一个参数,即用于填充掩码值的value。如果为 None,则使用 maximum_fill_value(self._data) 的输出代替。axis 参数用于设置轴值 -

print("
Result...
",maskArr.argmax(axis = 1))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[35, 85], [67, 33], [29, 88], [56, 45]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[0, 0], [ 0, 1], [1, 0], [0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return array of indices of the maximum values, use the ma.MaskedArray.argmax() method in Numpy # Masked values are treated as if they had the value "fill_value". # The "fill_value" is a parameter i.e. Value used to fill in the masked values. # If None, the output of maximum_fill_value(self._data) is used instead. # The axis parameter is used to set the axis values print("
Result...
",maskArr.argmax(axis = 1))

输出

Array...
[[35 85]
[67 33]
[29 88]
[56 45]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[35 85]
[67 --]
[-- 88]
[56 --]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 2)

Elements in the Masked Array...
8

Result...
[1 0 1 0]

更新于: 2022年2月4日

108 次浏览

开启你的 职业生涯

通过完成课程获得认证

开始学习
广告