Python 中的网络摄像头运动检测程序 ?
在这项中,我们准备编写一个 Python 程序,它将分析从网络摄像头获取的图像,尝试检测运动并以 CSV 文件的形式存储网络摄像头视频的时间间隔。
所需库
我们将使用 OpenCV 和 pandas 库。如果尚未安装,可以使用 pip 安装它,如下所示
$pip install opencv2, pandas
代码示例
#Import required libraries import cv2 import pandas as pd import time from datetime import datetime #Initialise variables stillImage = None motionImage = [ None, None ] time = [] # Initializing the DataFrame with start and end time df = pd.DataFrame(columns = ["start", "end"]) # Capturing video video = cv2.VideoCapture(0) while True: # Start reading image from video check, frame = video.read() motion = 0 # Convert color image to gray_scale image gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(gray, (21, 21), 0) if stillImage is None: stillImage = gray continue # Still Image and current image. diff_frame = cv2.absdiff(stillImage, gray) # change the image to white if static background and current frame is greater than 25. thresh_frame = cv2.threshold(diff_frame, 25, 255, cv2.THRESH_BINARY)[1] thresh_frame = cv2.dilate(thresh_frame, None, iterations = 2) # Finding contour and hierarchy from a moving object. contours,hierachy = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: if cv2.contourArea(contour) < 10000: continue motion = 1 (x, y, w, h) = cv2.boundingRect(contour) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3) # Append current status of motion motionImage.append(motion) motionImage = motionImage[-2:] # Append Start time of motion if motionImage[-1] == 1 and motionImage[-2] == 0: time.append(datetime.now()) # Append End time of motion if motionImage[-1] == 0 and motionImage[-2] == 1: time.append(datetime.now()) # Displaying image in gray_scale cv2.imshow("Gray_Frame", gray) # Display black and white frame & if the intensity difference is > 25, it turns white cv2.imshow("Threshold Frame", thresh_frame) # Display colored frame cv2.imshow("Colored_Frame", frame) key = cv2.waitKey(1) # Press q to stop the process if key == ord('q'): if motion == 1: time.append(datetime.now()) break # Append time of motion for i in range(0, len(time), 2): df = df.append({"Start":time[i], "End":time[i + 1]}, ignore_index = True) # Creating a csv file in which time of movements will be saved df.to_csv("FrameInMotion_time.csv") video.release() # close window cv2.destroyAllWindows()
输出
我们可以看到,我们将获得 3 个不同的窗口,它们将以 3 种不同的模式(灰度、彩色和黑白)显示我们网络摄像头的当前运动。
它还将在 CSV 文件中存储网络摄像头运动的时间,而且 CSV 的输出类似于
FrameMotion_time.csv(输出)
start end End Start 0 2019-02-21 18:10:59.718005 2019-02-21 18:08:35.791487
广告