Python 中的网络摄像头运动检测程序 ?
在这项中,我们准备编写一个 Python 程序,它将分析从网络摄像头获取的图像,尝试检测运动并以 CSV 文件的形式存储网络摄像头视频的时间间隔。
所需库
我们将使用 OpenCV 和 pandas 库。如果尚未安装,可以使用 pip 安装它,如下所示
$pip install opencv2, pandas
代码示例
#Import required libraries
import cv2
import pandas as pd
import time
from datetime import datetime
#Initialise variables
stillImage = None
motionImage = [ None, None ]
time = []
# Initializing the DataFrame with start and end time
df = pd.DataFrame(columns = ["start", "end"])
# Capturing video
video = cv2.VideoCapture(0)
while True:
# Start reading image from video
check, frame = video.read()
motion = 0
# Convert color image to gray_scale image
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if stillImage is None:
stillImage = gray
continue
# Still Image and current image.
diff_frame = cv2.absdiff(stillImage, gray)
# change the image to white if static background and current frame is greater than 25.
thresh_frame = cv2.threshold(diff_frame, 25, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations = 2)
# Finding contour and hierarchy from a moving object.
contours,hierachy = cv2.findContours(thresh_frame.copy(),
cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
if cv2.contourArea(contour) < 10000:
continue
motion = 1
(x, y, w, h) = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
# Append current status of motion
motionImage.append(motion)
motionImage = motionImage[-2:]
# Append Start time of motion
if motionImage[-1] == 1 and motionImage[-2] == 0:
time.append(datetime.now())
# Append End time of motion
if motionImage[-1] == 0 and motionImage[-2] == 1:
time.append(datetime.now())
# Displaying image in gray_scale
cv2.imshow("Gray_Frame", gray)
# Display black and white frame & if the intensity difference is > 25, it turns white
cv2.imshow("Threshold Frame", thresh_frame)
# Display colored frame
cv2.imshow("Colored_Frame", frame)
key = cv2.waitKey(1)
# Press q to stop the process
if key == ord('q'):
if motion == 1:
time.append(datetime.now())
break
# Append time of motion
for i in range(0, len(time), 2):
df = df.append({"Start":time[i], "End":time[i + 1]}, ignore_index = True)
# Creating a csv file in which time of movements will be saved
df.to_csv("FrameInMotion_time.csv")
video.release()
# close window
cv2.destroyAllWindows()输出

我们可以看到,我们将获得 3 个不同的窗口,它们将以 3 种不同的模式(灰度、彩色和黑白)显示我们网络摄像头的当前运动。
它还将在 CSV 文件中存储网络摄像头运动的时间,而且 CSV 的输出类似于
FrameMotion_time.csv(输出)
start end End Start 0 2019-02-21 18:10:59.718005 2019-02-21 18:08:35.791487
广告
数据结构
网络
关系型数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
JavaScript
PHP