威尔什-鲍威尔图着色算法
图着色在信息技术中是一个关键问题,它在调度、寄存器分配和地图着色等领域都有广泛的应用。威尔什-鲍威尔算法是一种有效的图着色方法,它确保相邻顶点具有不同的颜色,同时使用最少的颜色。在这篇文章中,我们将探讨两种使用C++算法实现威尔什-鲍威尔算法的方法。
使用的方法
顺序顶点排序
最大优先顶点排序
顺序顶点排序
第一种方法是根据顶点的度数递减顺序排列顶点,然后依次为顶点分配颜色。这种方法确保高度数顶点(通常具有更多邻居)优先着色。
算法
确定每个图顶点的度数。
确定顶点的度数,并按降序排序。
在一个数组中设置每个顶点位置的分配颜色。
按照步骤2确定的顺序重复步骤2。
为每个顶点分配最小的颜色,该颜色不会被其相邻顶点使用。
示例
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// Graph structure
struct Graph {
int V; // Number of vertices
vector<vector<int>> adj; // Adjacency list
// Constructor
Graph(int v) : V(v), adj(v) {}
// Function to add an edge between two vertices
void addEdge(int u, int v) {
adj[u].push_back(v);
adj[v].push_back(u);
}
};
// Function to compare vertices based on weight
bool compareWeights(pair<int, int> a, pair<int, int> b) {
return a.second > b.second;
}
// Function to perform graph coloring using Welsh-Powell algorithm
void graphColoring(Graph& graph) {
int V = graph.V;
vector<pair<int, int>> vertexWeights;
// Assign weights to each vertex based on their degree
for (int v = 0; v < V; v++) {
int weight = graph.adj[v].size();
vertexWeights.push_back(make_pair(v, weight));
}
// Sort vertices in descending order of weights
sort(vertexWeights.begin(), vertexWeights.end(), compareWeights);
// Array to store colors assigned to vertices
vector<int> color(V, -1);
// Assign colors to vertices in the sorted order
for (int i = 0; i < V; i++) {
int v = vertexWeights[i].first;
// Find the smallest unused color for the current vertex
vector<bool> usedColors(V, false);
for (int adjVertex : graph.adj[v]) {
if (color[adjVertex] != -1)
usedColors[color[adjVertex]] = true;
}
// Assign the smallest unused color to the current vertex
for (int c = 0; c < V; c++) {
if (!usedColors[c]) {
color[v] = c;
break;
}
}
}
// Print the coloring result
for (int v = 0; v < V; v++) {
cout << "Vertex " << v << " is assigned color " << color[v] << endl;
}
}
int main() {
// Create a sample graph
Graph graph(6);
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(1, 2);
graph.addEdge(1, 3);
graph.addEdge(2, 3);
graph.addEdge(3, 4);
graph.addEdge(4, 5);
// Perform graph coloring
graphColoring(graph);
return 0;
}
输出
Vertex 0 is assigned color 2 Vertex 1 is assigned color 0 Vertex 2 is assigned color 1 Vertex 3 is assigned color 2 Vertex 4 is assigned color 0 Vertex 5 is assigned color 1
最大优先顶点排序
与方法1类似,第二种方法也包括根据顶点的度数递减顺序排列顶点。这种方法首先对最高度数顶点着色,然后递归地对其未着色的邻居着色,而不是顺序分配颜色。
算法
确定每个图顶点的度数。
确定顶点的度数,并按降序排序。
在一个数组中设置每个顶点位置的分配颜色。
从最高度数顶点开始着色。
为当前顶点的每个未着色的邻居选择最小的可用颜色。
示例
#include <iostream>
#include <vector>
#include <algorithm>
#include <unordered_set>
using namespace std;
class Graph {
private:
int numVertices;
vector<unordered_set<int>> adjacencyList;
public:
Graph(int vertices) {
numVertices = vertices;
adjacencyList.resize(numVertices);
}
void addEdge(int src, int dest) {
adjacencyList[src].insert(dest);
adjacencyList[dest].insert(src);
}
int getNumVertices() {
return numVertices;
}
unordered_set<int>& getNeighbors(int vertex) {
return adjacencyList[vertex];
}
};
void welshPowellLargestFirst(Graph graph) {
int numVertices = graph.getNumVertices();
vector<int> colors(numVertices, -1);
vector<pair<int, int>> largestFirst;
for (int i = 0; i < numVertices; i++) {
largestFirst.push_back(make_pair(graph.getNeighbors(i).size(), i));
}
sort(largestFirst.rbegin(), largestFirst.rend());
int numColors = 0;
for (const auto& vertexPair : largestFirst) {
int vertex = vertexPair.second;
if (colors[vertex] != -1) {
continue; // Vertex already colored
}
colors[vertex] = numColors;
for (int neighbor : graph.getNeighbors(vertex)) {
if (colors[neighbor] == -1) {
colors[neighbor] = numColors;
}
}
numColors++;
}
// Print assigned colors
for (int i = 0; i < numVertices; i++) {
cout << "Vertex " << i << " - Color: " << colors[i] << endl;
}
}
int main() {
Graph graph(7);
graph.addEdge(0, 1);
graph.addEdge(0, 2);
graph.addEdge(0, 3);
graph.addEdge(1, 4);
graph.addEdge(1, 5);
graph.addEdge(2, 6);
graph.addEdge(3, 6);
welshPowellLargestFirst(graph);
return 0;
}
输出
Vertex 0 - Color: 0 Vertex 1 - Color: 0 Vertex 2 - Color: 1 Vertex 3 - Color: 1 Vertex 4 - Color: 0 Vertex 5 - Color: 0 Vertex 6 - Color: 1
结论
这篇博文分析了两种使用C++算法实现威尔什-鲍威尔图着色算法的不同方法。每种方法在顶点排序和颜色分配方面采用了不同的策略,从而产生了高效且优化的图着色方法。通过使用这些方法,我们可以有效地减少所需的颜色数量,同时确保相邻顶点具有不同的颜色。威尔什-鲍威尔算法凭借其灵活性和简洁性,仍然是各种图着色应用中的一个有价值的工具。
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP