计算数组中的逆序对
数组的逆序对表示:将数组转换为已排序形式需要进行多少次转换。当数组已排序时,需要进行 0 次转换,而在另一种情况下,转换次数将达到最大值,如果将数组倒置。
为了解决此问题,我们将采用归并排序方法来降低时间复杂度,并将其设为分治算法。
输入和输出
Input: A sequence of numbers. (1, 5, 6, 4, 20). Output: The number of inversions required to arrange the numbers into ascending order. Here the number of inversions are 2. First inversion: (1, 5, 4, 6, 20) Second inversion: (1, 4, 5, 6, 20)
算法
merge(array, tempArray, left, mid, right)
输入:两个数组,已合并,以及 left、right 和 mid 索引。
输出:已按排序顺序合并的数组。
Begin i := left, j := mid, k := right count := 0 while i <= mid -1 and j <= right, do if array[i] <= array[j], then tempArray[k] := array[i] increase i and k by 1 else tempArray[k] := array[j] increase j and k by 1 count := count + (mid - i) done while left part of the array has some extra element, do tempArray[k] := array[i] increase i and k by 1 done while right part of the array has some extra element, do tempArray[k] := array[j] increase j and k by 1 done return count End
mergeSort(array, tempArray, left, right)
输入:给定一个数组和一个临时数组,以及数组的 left 和 right 索引。
输出 − 排序后的逆序对数。
Begin count := 0 if right > left, then mid := (right + left)/2 count := mergeSort(array, tempArray, left, mid) count := count + mergeSort(array, tempArray, mid+1, right) count := count + merge(array, tempArray, left, mid+1, right) return count End
示例
#include <iostream> using namespace std; int merge(intarr[], int temp[], int left, int mid, int right) { int i, j, k; int count = 0; i = left; //i to locate first array location j = mid; //i to locate second array location k = left; //i to locate merged array location while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { //when left item is less than right item temp[k++] = arr[i++]; }else{ temp[k++] = arr[j++]; count += (mid - i); //find how many convertion is performed } } while (i <= mid - 1) //if first list has remaining item, add them in the list temp[k++] = arr[i++]; while (j <= right) //if second list has remaining item, add them in the list temp[k++] = arr[j++]; for (i=left; i <= right; i++) arr[i] = temp[i]; //store temp Array to main array return count; } intmergeSort(intarr[], int temp[], int left, int right) { int mid, count = 0; if (right > left) { mid = (right + left)/2; //find mid index of the array count = mergeSort(arr, temp, left, mid); //merge sort left sub array count += mergeSort(arr, temp, mid+1, right); //merge sort right sub array count += merge(arr, temp, left, mid+1, right); //merge two sub arrays } return count; } intarrInversion(intarr[], int n) { int temp[n]; return mergeSort(arr, temp, 0, n - 1); } int main() { intarr[] = {1, 5, 6, 4, 20}; int n = 5; cout<< "Number of inversions are "<<arrInversion(arr, n); }
输出
Number of inversions are 2
广告