二维矩阵中的最大和矩形
给定一个矩阵。我们需要找出矩形(有时为正方形)矩阵,其和最大。
此算法的思想是固定左右列,然后为每一行尝试找出从左列到右列元素的和,并临时存储它。我们将尝试找出顶部和底部行号。获得临时数组后,我们可以应用 Kadane 算法来查找最大和子数组。这样,整个矩形就形成了。
输入和输出
Input: The matrix of integers. 1 2 -1 -4 -20 -8 -3 4 2 1 3 8 10 1 3 -4 -1 1 7 -6 Output: The top left point and bottom right point of the submatrix, and the total sum of the submatrix. (Top, Left) (1, 1) (Bottom, Right) (3, 3) The max sum is: 29
算法
kadaneAlgorithm(array, start, end, n)
输入:数组将保存和、开始和结束点、元素数量。
输出 − 找出起点和终点。
Begin sum := 0 and maxSum := - ∞ end := -1 tempStart := 0 for each element i in the array, do sum := sum + array[i] if sum < 0, then sum := 0 tempStart := i + 1 else if sum > maxSum, then maxSum := sum start := tempStart end := i done if end ≠ -1, then return maxSum maxSum := array[0], start := 0 and end := 0 for each element i from 1 to n of array, do if array[i] > maxSum, then maxSum := array[i] start := i and end := i done return maxSum End
maxSumRect(Matrix)
输入:给定的矩阵。
输出:矩形的最大和。
Begin maxSum := - ∞ define temp array, whose size is same as row of matrix for left := 0 to number of columns in the Matrix, do till temp array with 0s for right := left to column of matrix -1, do for each row i, do temp[i] := matrix[i, right] done sum := kadaneAlgorithm(temp, start, end, number of rows) if sum > maxSum, then maxSum := sum endLeft := left endRight := right endTop := start endBottom := end done done display top left and bottom right corner and the maxSum End
示例
#include<iostream> #define ROW 4 #define COL 5 using namespace std; int M[ROW][COL] = { {1, 2, -1, -4, -20}, {-8, -3, 4, 2, 1}, {3, 8, 10, 1, 3}, {-4, -1, 1, 7, -6} }; int kadaneAlgo(int arr[], int &start, int &end, int n) { //find max sum and starting and ending location int sum = 0, maxSum = INT_MIN; end = -1; //at first no place is selected int tempStart = 0; //starting from 0 for (int i = 0; i < n; i++) { sum += arr[i]; if (sum < 0) { sum = 0; tempStart = i+1; }else if (sum > maxSum) { //get maximum sum, and update start and end index maxSum = sum; start = tempStart; end = i; } } if (end != -1) return maxSum; //when all elements are negative in the array maxSum = arr[0]; start = end = 0; // Find the maximum element in array for (int i = 1; i < n; i++) { if (arr[i] > maxSum) { maxSum = arr[i]; start = end = i; } } return maxSum; } void maxSumRect() { int maxSum = INT_MIN, endLeft, endRight, endTop, endBottom; int left, right; int temp[ROW], sum, start, end; for (left = 0; left < COL; left++) { for(int i = 0; i<ROW; i++)//temp initially holds all 0 temp[i] = 0; for (right = left; right < COL; ++right) { for (int i = 0; i < ROW; ++i) //for each row, find the sum temp[i] += M[i][right]; sum = kadaneAlgo(temp, start, end, ROW); //find sum of rectangle (top, left) and (bottom right) if (sum > maxSum) { //find maximum value of sum, then update corner points maxSum = sum; endLeft = left; endRight = right; endTop = start; endBottom = end; } } } cout << "(Top, Left) ("<<endTop<<", "<<endLeft<<")"<<endl; cout << "(Bottom, Right) ("<<endBottom<<", "<<endRight<<")"<<endl; cout << "The max sum is: "<< maxSum; } int main() { maxSumRect(); }
输出
(Top, Left) (1, 1) (Bottom, Right) (3, 3) The max sum is: 29
广告