普里姆最小生成树算法
有一个连通图 G(V, E),并且给出了每条边的权重或成本。普里姆算法将找到图 G 的最小生成树。
这是一种不断发展的树的方法。此算法需要一个种子值来开始该树。种子顶点不断增长,形成整个树。
该问题将使用两个集合来解决。一个集合包含已选择的节点,另一个集合则包含尚未考虑的项目。它从种子顶点开始,根据最小边成本,采用相邻顶点,因此它通过逐个选取节点来发展树。
此问题的复杂度为 O(V^2)。其中 V 是顶点数。
输入和输出
Input: The adjacency list: Output: (0)---(1|1) (0)---(2|3) (0)---(3|4) (1)---(0|1) (1)---(4|2) (2)---(0|3) (3)---(0|4) (4)---(1|2) (4)---(5|2) (5)---(4|2) (5)---(6|3) (6)---(5|3)
算法
prims(g: Graph, t: tree, start)
输入 − 图形 g、一个空白树和一个名为“start”的种子顶点
输出 − 添加边后的树。
Begin define two sets as usedVert, unusedVert usedVert[0] := start and unusedVert[0] := φ for all vertices except start do usedVert[i] := φ unusedVert[i] := i //add all vertices in unused list done while number of vertices in usedVert ≠ V do //V is number of total nodes min := ∞ for all vertices of usedVert array do for all vertices of the graph do if min > cost[i,j] AND i ≠ j then min := cost[i,j] ed := edge between i and j, and cost of ed := min done done unusedVert[destination of ed] := φ add edge ed into the tree t add source of ed into usedVert done End
范例
#include<iostream> #define V 7 #define INF 999 using namespace std; //Cost matrix of the graph int costMat[V][V] = { {0, 1, 3, 4, INF, 5, INF}, {1, 0, INF, 7, 2, INF, INF}, {3, INF, 0, INF, 8, INF, INF}, {4, 7, INF, 0, INF, INF, INF}, {INF, 2, 8, INF, 0, 2, 4}, {5, INF, INF, INF, 2, 0, 3}, {INF, INF, INF, INF, 4, 3, 0} }; typedef struct { int u, v, cost; }edge; class Tree { int n; edge edges[V-1]; //as a tree has vertex-1 edges public: Tree() { n = 0; } void addEdge(edge e) { edges[n] = e; //add edge e into the tree n++; } void printEdges() { //print edge, cost and total cost int tCost = 0; for(int i = 0; i<n; i++) { cout << "Edge: " << char(edges[i].u+'A') << "--" << char(edges[i].v+'A'); cout << " And Cost: " << edges[i].cost << endl; tCost += edges[i].cost; } cout << "Total Cost: " << tCost << endl; } friend void prims(Tree &tre, int start); }; void prims(Tree &tr, int start) { int usedVert[V], unusedVert[V]; int i, j, min, p; edge ed; //initialize usedVert[0] = start; p = 1; unusedVert[0] = -1; //-1 indicates the place is empty for(i = 1; i<V; i++) { usedVert[i] = -1; //all places except first is empty unusedVert[i] = i; //fill with vertices } tr.n = 0; //get edges and add to tree while(p != V) { //p is number of vertices in usedVert array min = INF; for(i = 0; i<p; i++) { for(j = 0; j<V; j++) { if(unusedVert[j] != -1) { if(min > costMat[i][j] && costMat[i][j] != 0) { //find the edge with minimum cost //such that u is considered and v is not considered yet min = costMat[i][j]; ed.u = i; ed.v = j; ed.cost = min; } } } } unusedVert[ed.v] = -1; //delete v from unusedVertex tr.addEdge(ed); usedVert[p] = ed.u; p++; //add u to usedVertex } } main() { Tree tr; prims(tr, 0); //starting node 0 tr.printEdges(); }
输出
(0)---(1|1) (0)---(2|3) (0)---(3|4) (1)---(0|1) (1)---(4|2) (2)---(0|3) (3)---(0|4) (4)---(1|2) (4)---(5|2) (5)---(4|2) (5)---(6|3) (6)---(5|3)
广告