克鲁斯卡尔(最小生成树)MST算法


G(V,E)是有连接的图,且给定了每条边的权重或代价。克鲁斯卡尔算法将使用此图和代价找出最小生成树。

该算法采用合并树的方法。最初,有多棵不同的树,此算法将通过选取代价最小的边将这些树合并,形成一棵独立的树。

在这个问题中,列出所有边,并根据其代价进行排序。从列表中,选出代价最小的边添加到树中,并检查每条边是否形成了回路,如果形成了回路,则从列表中舍弃该边,然后查找下一条边。

  • 此算法的时间复杂度为O(E log E)或O(E log V),其中E是边的数量,V是顶点的数量。

输入 - 邻接矩阵

0 1 3 4 ∞ 5 ∞
1 0 ∞ 7 2 ∞ ∞
3 ∞ 0 ∞ 8 ∞ ∞
4 7 ∞ 0 ∞ ∞ ∞
∞ 2 8 ∞ 0 2 4
5 ∞ ∞ ∞ 2 0 3
∞ ∞ ∞ ∞ 4 3 0

输出 -

Edge: B--A And Cost: 1

Edge: E--B And Cost: 2

Edge: F--E And Cost: 2

Edge: C--A And Cost: 3  

Edge: G--F And Cost: 3

Edge: D--A And Cost: 4

Total Cost: 15

算法

kruskal(g: 图,t: 树)

输入 - 给定的图g和一棵空树t

输出 - 选定边的树t

Begin
   create set for each vertices in graph g
   for each set of vertex u do
      add u in the vertexSet[u]
   done
   sort the edge list.
   count := 0
   while count <= V – 1 do //as tree must have V – 1 edges
      ed := edgeList[count] //take an edge from edge list
      if the starting vertex and ending vertex of ed are in same set then
         merge vertexSet[start] and vertexSet[end]
         add the ed into tree t
      count := count + 1
   done
End

示例

#include<iostream>
#define V 7
#define INF 999
using namespace std;
//Cost matrix of the graph
int costMat[V][V] = {
   {0, 1, 3, 4, INF, 5, INF},
   {1, 0, INF, 7, 2, INF, INF},
   {3, INF, 0, INF, 8, INF, INF},
   {4, 7, INF, 0, INF, INF, INF},
   {INF, 2, 8, INF, 0, 2, 4},
   {5, INF, INF, INF, 2, 0, 3},
   {INF, INF, INF, INF, 4, 3, 0}
};
typedef struct{
   int u, v, cost;
}edge;
void swapping(edge &e1, edge &e2){
   edge temp;
   temp = e1;
   e1 = e2;
   e2 = temp;
}
class Tree{
   int n;
   edge edges[V-1]; //as a tree has vertex-1 edges
   public:
   Tree(){
      n = 0;
   }
   void addEdge(edge e){
      edges[n] = e; //add edge e into the tree
      n++;
   }
   void printEdges(){ //print edge, cost and total cost
      int tCost = 0;
      for(int i = 0; i<n; i++){
         cout << "Edge: " << char(edges[i].u+'A') << "--" << char(edges[i].v+'A');
         cout << " And Cost: " << edges[i].cost << endl;
         tCost += edges[i].cost;
      }
      cout << "Total Cost: " << tCost << endl;
   }
};
class VSet{
   int n;
   int set[V];//a set can hold maximum V vertices
   public:
   VSet(){
      n = -1;
   }
   void addVertex(int vert){
      set[++n] = vert; //add vertex to the set
   }
   int deleteVertex(){
      return set[n--];
   }
   friend int findVertex(VSet *vertSetArr, int vert);
   friend void merge(VSet &set1, VSet &set2);
};
void merge(VSet &set1, VSet &set2){
   //merge two vertex sets together
   while(set2.n >= 0)
      set1.addVertex(set2.deleteVertex());
   //addToSet(vSet1, delFromSet(vSet2));
}
int findVertex(VSet *vertSetArr, int vert){
   //find the vertex in different vertex sets
   for(int i = 0; i<V; i++)
      for(int j = 0; j<=vertSetArr[i].n; j++)
         if(vert == vertSetArr[i].set[j])
   return i;//node found in i-th vertex set
}
int findEdge(edge *edgeList){
   //find the edges from the cost matrix of Graph and store to edgeList
   int count = -1, i, j;
   for(i = 0; i<V; i++)
      for(j = 0; j<i; j++)
   if(costMat[i][j] != INF){
      count++;
      //fill edge list for the position 'count'
      edgeList[count].u = i; edgeList[count].v = j;
      edgeList[count].cost = costMat[i][j];
   }
   return count+1;
}
void sortEdge(edge *edgeList, int n){
   //sort the edges of graph in ascending order of cost
   int flag = 1, i, j;
   for(i = 0; i<(n-1) && flag; i++){//modified bubble sort is used
      flag = 0;
      for(j = 0; j<(n-i-1); j++)
      if(edgeList[j].cost > edgeList[j+1].cost){
         swapping(edgeList[j], edgeList[j+1]);
         flag = 1;
      }
   }
}
void kruskal(Tree &tr){
   int ecount, maxEdge = V*(V-1)/2; //max n(n-1)/2 edges can have in a graph
   edge edgeList[maxEdge], ed;
   int uloc, vloc;
   VSet VSetArray[V];
   ecount = findEdge(edgeList);
   for(int i = 0; i < V; i++)
      VSetArray[i].addVertex(i);//each set contains one element
   sortEdge(edgeList, ecount); //ecount number of edges in the graph
   int count = 0;
   while(count <= V-1){
      ed = edgeList[count];
      uloc = findVertex(VSetArray, ed.u);
      vloc = findVertex(VSetArray, ed.v);
      if(uloc != vloc){ //check whether source abd dest is in same set or not
         merge(VSetArray[uloc], VSetArray[vloc]);
         tr.addEdge(ed);
      }
      count++;
   }
}
int main(){
   Tree tr;
   kruskal(tr);
   tr.printEdges();
}

输出

Edge: B--A And Cost: 1
Edge: E--B And Cost: 2
Edge: F--E And Cost: 2
Edge: C--A And Cost: 3
Edge: G--F And Cost: 3
Edge: D--A And Cost: 4
Total Cost: 15

更新时间:2020 年 6 月 11 日

1K+ 浏览

开启你的职业生涯

完成课程获得认证

开始
广告
© . All rights reserved.