将 ufunc outer() 函数应用于 Numpy 中的所有对
将ufunc outer() 函数应用于所有对。numpy.ufunc 具有按元素对整个数组进行操作的函数。ufunc 用 C 语言编写(为了获得速度),并通过 NumPy 的 ufunc 设施链接到 Python 中。通用函数(简称 ufunc)是按元素的方式对 ndarray 进行操作的函数,支持数组广播、类型转换以及其他一些标准功能。也就是说,ufunc 是一个“矢量化”的包装器,用于处理具有固定数量特定输入并产生固定数量特定输出的函数。
步骤
首先,导入所需的库 –
import numpy as np
创建两个数组 –
arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]]) arr2 = np.array([[7, 14, 21, 28, 35]])
显示数组 –
print("Array 1...
", arr1)
print("
Array 2...
", arr2)获取数组的类型 –
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)获取数组的维度 –
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)获取数组的形状 –
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)将 ufunc outer() 函数应用于所有对 –
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)举例
import numpy as np
# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility
# Create two arrays
arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]])
arr2 = np.array([[7, 14, 21, 28, 35]])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# Apply the ufunc outer() function to all pairs
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)输出
Array 1... [[ 5 10 15 20] [25 30 35 40]] Array 2... [[ 7 14 21 28 35]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 4) Our Array 2 Shape... (1, 5) Result... [[[[ 35 70 105 140 175]] [[ 70 140 210 280 350]] [[ 105 210 315 420 525]] [[ 140 280 420 560 700]]] [[[ 175 350 525 700 875]] [[ 210 420 630 840 1050]] [[ 245 490 735 980 1225]] [[ 280 560 840 1120 1400]]]] Shape... (2, 4, 1, 5)
广告
数据结构
网络
RDBMS
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP