将 ufunc outer() 函数应用于 Numpy 中的所有对


ufunc outer() 函数应用于所有对。numpy.ufunc 具有按元素对整个数组进行操作的函数。ufunc 用 C 语言编写(为了获得速度),并通过 NumPy 的 ufunc 设施链接到 Python 中。通用函数(简称 ufunc)是按元素的方式对 ndarray 进行操作的函数,支持数组广播、类型转换以及其他一些标准功能。也就是说,ufunc 是一个“矢量化”的包装器,用于处理具有固定数量特定输入并产生固定数量特定输出的函数。

步骤

首先,导入所需的库 –

import numpy as np

创建两个数组 –

arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]])
arr2 = np.array([[7, 14, 21, 28, 35]])

显示数组 –

print("Array 1...
", arr1) print("
Array 2...
", arr2)

获取数组的类型 –

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

获取数组的维度 –

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

获取数组的形状 –

print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)

将 ufunc outer() 函数应用于所有对 –

res = np.multiply.outer(arr1, arr2)
print("
Result...
",res) print("
Shape...
",res.shape)

举例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility

# Create two arrays
arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]])
arr2 = np.array([[7, 14, 21, 28, 35]])

# Display the arrays
print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # Apply the ufunc outer() function to all pairs res = np.multiply.outer(arr1, arr2) print("
Result...
",res) print("
Shape...
",res.shape)

输出

Array 1...
[[ 5 10 15 20]
[25 30 35 40]]

Array 2...
[[ 7 14 21 28 35]]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
2

Our Array 2 Dimensions...
2

Our Array 1 Shape...
(2, 4)

Our Array 2 Shape...
(1, 5)

Result...
[[[[ 35 70 105 140 175]]

[[ 70 140 210 280 350]]

[[ 105 210 315 420 525]]

[[ 140 280 420 560 700]]]


[[[ 175 350 525 700 875]]

[[ 210 420 630 840 1050]]

[[ 245 490 735 980 1225]]

[[ 280 560 840 1120 1400]]]]

Shape...
(2, 4, 1, 5)

更新于:07-02-2022

273 次浏览

开启你的 事业

完成课程获得认证

开始
广告