找到 346 篇文章 关于数据结构算法

如何从有限自动机生成正则表达式?

Bhanu Priya
更新于 2021年6月16日 14:58:05

2K+ 浏览量

有两种方法可以将确定性有限自动机 (DFA) 转换为正则表达式 (RE)。它们如下所示 -Arden 方法状态消除方法让我们详细了解这些方法。Arden 定理令 P 和 Q 为两个正则表达式。如果 P 不包含空字符串,则以下关于 R 的等式:R = Q + RP,该等式有唯一的解,即 R = QP*这里,有限自动机没有 ε 移动它必须只有一个初始状态 q1它的状态为 q1、q2、q3、……qn。最终状态可以是某个 qi,其中 i

解释正则表达式和正则语言的星高

Bhanu Priya
更新于 2021年6月12日 11:58:55

470 浏览量

正则表达式 (RE) 的星高只不过是计算理论 (TOC) 中 Kleene 星的深度。例如,a+b 星高为 0(a+b)* 星高为 1(a*+b*)* 星高为 2 …….星高用于表示正则语言和表达式的结构复杂性。正则表达式可能具有不同的星高,这取决于结构复杂性或嵌套。正则语言的星高是一个唯一的数字,它等于表示该语言的任何正则表达式的最小星高。正则表达式的星高是 ... 阅读更多

如何在 TOC 中将 FA 转换为左线性文法?

Bhanu Priya
更新于 2021年6月12日 11:55:37

4K+ 浏览量

产生式右侧最多只有一个变量的文法称为线性文法。以下是线性文法的示例 -S→aSb/ε这里,如果你观察,我们可以通过划分……S→AbA→aAbA→ε左线性文法一个文法是左线性文法,其中所有右端非终结符都在最左边。例如,A→Sa/ε转换步骤将有限自动机 (FA) 转换为左线性文法的步骤如下所示 -步骤 1 - 取有限自动机的逆步骤 2 - 写右线性文法步骤 3 - 然后取右线性文法的逆 ... 阅读更多

如何将 FA 转换为右线性正则文法?

Bhanu Priya
更新于 2021年6月12日 11:53:24

6K+ 浏览量

产生式右侧最多只有一个变量的文法称为线性文法。示例 1      S→aSb/ε示例 2      S→Ab      A→aAb      A→ε右线性文法一个文法是右线性文法,其中所有右端非终结符都在最右边。例如,      S->aS/ε转换算法将有限自动机 (FA) 转换为右线性文法的算法如下所示 -步骤 1 - 从起始状态开始。步骤 2 - 对每个状态重复该过程。步骤 3 - 将产生式写成 ... 阅读更多

如何在 TOC 中识别语言是否为正则语言?

Bhanu Priya
更新于 2021年6月12日 11:51:15

5K+ 浏览量

识别语言是否为正则语言,是基于鸽巢原理。这通常称为抽取引理。正则语言的抽取引理它提供了一种从给定字符串中抽取(生成)许多子串的方法。换句话说,我们说它提供了将给定的长输入字符串分解成几个子串的方法。它给出了证明一组字符串不是正则语言的必要条件。但是抽取引理是一个矛盾检验。这意味着如果任何语言不满足抽取引理,那么我们可以说它不是正则语言。但是,如果它满足 ... 阅读更多

TOC 中的丘奇-图灵论题是什么?

Bhanu Priya
更新于 2021年6月12日 11:49:05

26K+ 浏览量

丘奇-图灵论题指出,每个可解的判定问题都可以转换为等价的图灵机问题。它可以用两种方式解释,如下所示 -判定问题的丘奇-图灵论题。判定问题的扩展丘奇-图灵论题。让我们了解这两种方式。判定问题的丘奇-图灵论题如果且仅当存在一个图灵机对所有输入字符串都停止并解决该问题,则存在某种有效程序来解决任何判定问题。判定问题的扩展丘奇-图灵论题如果且仅当存在一个图灵机 ... 阅读更多

消除 ε、单元和无用符号,并重写为 CNF

Bhanu Priya
更新于 2021年6月12日 12:15:02

975 浏览量

问题消除给定文法的 ε、单元和无用符号,并将其重写为 CNF。S->0E0|1FF| εE->GF->S|EG->S| ε解决方案在给定文法中,我们将首先删除空产生式。文法中有两个空产生式,如下所示 -S ==> εG ==> ε因此,删除空产生式并使用 ε 重写包含 G 的所有其他规则,以及旧的产生式。我们不删除 S ==> epsilon,因为它是一个起始符号。删除 G ==> epsilon,我们得到以下内容 -S ==> 0E0 | 1FF | εE ==> G | εF ==> S | EG ==> S现在删除 ... 阅读更多

为给定的上下文无关文法生成 CNF

Bhanu Priya
更新于 2021年6月12日 12:12:15

946 浏览量

问题为以下上下文无关文法 (CFG) 生成乔姆斯基范式 (CNF)。S->aAa|bBb|eA->C|aB->C|bC->CDE|eD->A|B|ab解决方案按照下面提到的步骤为给定的 CFG 生成 CNF步骤 1 - 消除 ∧ -产生式我们可以删除、擦除或 ∧ -产生式重复两次。S --> aAa | bBb | ∧A --> a | ∧B --> b | ∧D --> A | B | ab步骤 2 - 消除上述文法中的单元产生式消除 R.H.S 一个符号产生式S --> aDa | bDbD --> a | b | ab步骤 3 - 消除无用符号E 是给定文法中的一个无用符号,因为它在 RHS 中没有派生。S ... 阅读更多

将给定的上下文无关文法转换为 CNF

Bhanu Priya
更新于 2021年6月12日 12:10:49

18K+ 浏览量

问题将给定文法转换为乔姆斯基范式 (CNF)S->AAA|BA->aA|BB-> ε解决方案按照以下步骤将 CFG 转换为 CNF -步骤 1 − 消除 ε 产生式要消除 ε 产生式,必须在所有其他产生式的 RHS 上替换产生 ε 的变量,以便删除 ε 产生式。在所有其他产生式中用 ε 替换 B 会得到以下产生式集 -S-> AAA | ε | BA->aA | ε | B在所有其他产生式中用 \epsilon 替换 A 会得到以下内容 -S ->AAA | AA | A | B | ε [用 ε 替换 1、2 和 3 个 A ... 阅读更多

解释无用符号的去除

Bhanu Priya
更新于 2021年6月12日 12:06:25

6K+ 浏览量

并非所有文法都经过优化,这意味着文法可能包含一些额外的符号(非终结符),这些符号会增加文法的长度。因此,我们必须通过删除这些无用符号来简化文法。属性简化文法的属性如下所述 -G 的每个非终结符和终结符都出现在某个词的 L 推导中不应该有任何产生式,例如 X->Y,其中 X 和 Y 是非终结符。如果 ε 不在语言 L 中,则不需要在产生式 X-> ε 中。简化文法的用途如下 -定义如果存在 ... 阅读更多

广告