在C++中,如何找到满足给定位置具有开括号的平衡表达式?
给定一个整数m和一个位置数组'position[]' (1 <= length(position[]) <= 2m),找到可以构造长度为2m的正确括号表达式的数量,使得给定位置具有开括号。
注意:position[]数组以(基于1的索引)[0, 1, 1, 0]的形式提供。这里1表示应该设置开括号的位置。对于值为0的位置,可以设置开括号或闭括号。
示例
Input: n = 2, position[] = [1, 0, 1, 0] Output: 1 The only possibility is given below: [ ] [ ] In this case, recursive and recursion implementing memorization approach will be explained.
算法
我们必须将给定数组adj1(假设)中所有带有开括号的位置标记为1。
我们运行一个递归循环,方法如下:
如果总括号数(开括号减去闭括号)小于零,则返回0。
如果索引达到m并且总括号数等于0,则存在解决方案并返回1,否则返回0。
如果索引值预先分配为1,则我们必须使用index+1递归调用函数,并将总括号数递增。
否则,我们必须通过在该位置或索引处插入开括号并将总括号数递增1,以及在该索引处插入闭括号并将总括号数递减1,然后继续到下一个索引直到m,来递归调用函数。
以下是上述算法的递归解决方案:
示例
// C++ application of above method implementing Recursion #include <bits/stdc++.h> using namespace std; // Function to locate or find Number of proper bracket expressions int find(int index1, int openbrk1, int m, int adj1[]){ // If open-closed brackets less than 0 if (openbrk1 < 0) return 0; // If index reaches the end of expression if (index1 == m) { // If brackets are balanced if (openbrk1 == 0) return 1; else return 0; } // If the current index has assigned open bracket if (adj1[index1] == 1) { // We have to move forward increasing the // length of open brackets return find(index1 + 1, openbrk1 + 1, m, adj1); } else { // We have to move forward by inserting open as well // as closed brackets on that index return find(index1 + 1, openbrk1 + 1, m, adj1) + find(index1 + 1, openbrk1 - 1, m, adj1); } } // Driver Code int main(){ int m = 2; // Open brackets at position 1 int adj1[4] = { 1, 0, 0, 0 }; // Calling the find function to calculate the answer cout << find(0, 0, 2 * m, adj1) << endl; return 0; }
输出
2
**记忆化方法 -**上述算法的时间复杂度可以通过实现记忆化来改进或优化。
唯一需要执行的操作是实现一个数组来存储先前迭代的结果,以便如果已经计算出值,则不需要多次递归调用同一个函数。
以下是所需的实现
// C++ application of above method implementing memorization #include <bits/stdc++.h> using namespace std; #define M 1000 // Function to locate or find Number of proper bracket expressions int find(int index1, int openbrk1, int m, int dp1[M][M], int adj1[]){ // If open-closed brackets is less than 0 if (openbrk1 < 0) return 0; // If index attains or reaches the end of expression if (index1 == m) { // If brackets are balanced if (openbrk1 == 0) return 1; else return 0; } // If already stored in dp1 if (dp1[index1][openbrk1] != -1) return dp1[index1][openbrk1]; // If the current index has assigned open bracket if (adj1[index1] == 1) { // We have to move forward increasing the length of open brackets dp1[index1][openbrk1] = find(index1 + 1, openbrk1 + 1, m, dp1, adj1); } else { // We have to move forward by inserting open as // well as closed brackets on that index dp1[index1][openbrk1] = find(index1 + 1, openbrk1 + 1, m, dp1, adj1) + find(index1 + 1, openbrk1 - 1, m, dp1, adj1); } // We have to return the answer return dp1[index1][openbrk1]; } // Driver Code int main(){ // dp1 array to precalculate the answer int dp1[M][M]; int m = 2; memset(dp1, -1, sizeof(dp1)); // Open brackets at position 1 int adj1[4] = { 1, 0, 0, 0 }; // We have to call the find function to compute the answer cout<< find(0, 0, 2 * m, dp1, adj1) << endl; return 0; }
输出
2
时间复杂度:O(N2)
广告