Python数据平滑的Binning方法


在进行统计分析时,我们经常使用一种称为数据平滑的方法来使数据更规范、更定性。在平滑过程中,我们定义一个范围,也称为bin(箱),并将该范围内任何数据值都放入该bin中。这称为binning方法。下面是一个binning的示例,然后我们将看到如何使用Python程序实现binning方法。

Binning示例

让我们取一系列数字。找到最大值和最小值。根据分析需要多少数据点来决定我们需要多少个bin。创建这些组并将每个数字分配到这些组中。上限值不包含在内,属于下一个组。

示例

Given numbers: 12, 32, 10, 17, 19, 28, 22, 26, 29,16
Number of groups : 4
Here
Max Value: 32
Min Value: 10
So the groups are –
(10-15), (15-21), (21-27), (27-32)

输出

将数字放入bin后,我们得到以下结果:

12 -> (10-15)
32 -> (27-32)
10 -> (10-15)
17 -> (15-21)
19 -> (15-21)
28 -> (27-32)
22 -> (21-27)
26 -> (21-27)
29 -> (27-32)
16 -> (15-21)

Binning程序

对于此程序,我们定义了两个函数。一个函数用于通过定义上限和下限来创建bin。另一个函数是将输入值分配给每个bin。每个bin也获得一个索引。我们查看每个输入值如何分配给bin,并跟踪有多少值进入特定bin。

示例

 在线演示

from collections import Counter
def Binning_method(lower_bound, width, quantity):
   binning = []
   for low in range(lower_bound, lower_bound + quantity * width + 1, width):
      binning.append((low, low + width))
   return binning
def bin_assign(v, b):
   for i in range(0, len(b)):
      if b[i][0] <= v < b[i][1]:
         return i
the_bins = Binning_method(lower_bound=50,
   width=4,
   quantity=10)
print("The Bins: \n",the_bins)
weights_of_objects = [89.2, 57.2, 63.4, 84.6, 90.2, 60.3,88.7, 65.2, 79.8, 80.2, 93.5, 79.3,72.5, 59.2, 77.2, 67.0, 88.2, 73.5]
print("\nBinned Values:\n")
binned_weight = []
for val in weights_of_objects:
   index = bin_assign(val, the_bins)
   #print(val, index, binning[index])
   print(val,"-with index-", index,":", the_bins[index])
   binned_weight.append(index)
freq = Counter(binned_weight)
print("\nCount of values in each index: ")
print(freq)

输出

运行上述代码将得到以下结果:

The Bins:
   [(50, 54), (54, 58), (58, 62), (62, 66), (66, 70), (70, 74), (74, 78), (78, 82), (82, 86), (86, 90), (90, 94)]
Binned Values:
89.2 -with index- 9 : (86, 90)
57.2 -with index- 1 : (54, 58)
63.4 -with index- 3 : (62, 66)
84.6 -with index- 8 : (82, 86)
90.2 -with index- 10 : (90, 94)
60.3 -with index- 2 : (58, 62)
88.7 -with index- 9 : (86, 90)
65.2 -with index- 3 : (62, 66)
79.8 -with index- 7 : (78, 82)
80.2 -with index- 7 : (78, 82)
93.5 -with index- 10 : (90, 94)
79.3 -with index- 7 : (78, 82)
72.5 -with index- 5 : (70, 74)
59.2 -with index- 2 : (58, 62)
77.2 -with index- 6 : (74, 78)
67.0 -with index- 4 : (66, 70)
88.2 -with index- 9 : (86, 90)
73.5 -with index- 5 : (70, 74)
Count of values in each index:
Counter({9: 3, 7: 3, 3: 2, 10: 2, 2: 2, 5: 2, 1: 1, 8: 1, 6: 1, 4: 1})

更新于:2020年2月18日

1K+ 次浏览

开启你的职业生涯

完成课程获得认证

开始学习
广告