Python矩阵中的广度优先搜索
在给定的矩阵中,有四个对象用于分析元素位置:左、右、下和上。
广度优先搜索就是找到给定二维矩阵的两个元素之间的最短距离。因此,在每个单元格中,我们可以执行四个操作,可以用四个数字表示为:
- ‘2’表示矩阵中的单元格是源点。
- ‘3’表示矩阵中的单元格是目标点。
- ‘1’表示可以沿某个方向进一步移动该单元格。
- ‘0’表示不能沿任何方向移动矩阵中的单元格。
基于上述说明,我们可以对给定的矩阵执行广度优先搜索操作。
解决这个问题的方法
使用BFS遍历整个矩阵并找到任何单元格之间最小或最短距离的算法如下:
- 首先输入行和列。
- 用给定的行和列初始化一个矩阵。
- 一个整数函数`shortestDist(int row, int col, int mat[][col])`以行、列和矩阵作为输入,并返回矩阵元素之间的最短距离。
- 初始化变量`source`和`destination`以找出源元素和目标元素。
- 如果元素是‘3’,则将其标记为目标点;如果元素是‘2’,则将其标记为源元素。
- 现在初始化队列数据结构,以在给定的矩阵上实现广度优先搜索。
- 将矩阵的行和列作为对插入队列中。现在移动到单元格中,并找出它是否是目标单元格。如果目标单元格的距离最小或小于当前单元格,则更新距离。
- 再次移动到另一个方向,以找出从当前单元格到该单元格的最小距离。
- 返回最小距离作为输出。
示例
import queue
INF = 10000
class Node:
def __init__(self, i, j):
self.row_num = i
self.col_num = j
def findDistance(row, col, mat):
source_i = 0
source_j = 0
destination_i = 0
destination_j = 0
for i in range(0, row):
for j in range(0, col):
if mat[i][j] == 2 :
source_i = i
source_j = j
if mat[i][j] == 3 :
destination_i = i
destination_j = j
dist = []
for i in range(0, row):
sublist = []
for j in range(0, col):
sublist.append(INF)
dist.append(sublist)
# initialise queue to start BFS on matrix
q = queue.Queue()
source = Node(source_i, source_j)
q.put(source)
dist[source_i][source_j] = 0
# modified BFS by add constraint checks
while (not q.empty()):
# extract and remove the node from the front of queue
temp = q.get()
x = temp.row_num
y = temp.col_num
# If move towards left is allowed or it is the destnation cell
if y - 1 >= 0 and (mat[x][y - 1] == 1 or mat[x][y - 1] == 3) :
# if distance to reach the cell to the left is less than the computed previous path distance, update it
if dist[x][y] + 1 < dist[x][y - 1] :
dist[x][y - 1] = dist[x][y] + 1
next = Node(x, y - 1)
q.put(next)
# If move towards right is allowed or it is the destination cell
if y + 1 < col and (mat[x][y + 1] == 1 or mat[x][y + 1] == 3) :
# if distance to reach the cell to the right is less than the computed previous path distance, update it
if dist[x][y] + 1 < dist[x][y + 1] :
dist[x][y + 1] = dist[x][y] + 1
next = Node(x, y + 1)
q.put(next);
# If move towards up is allowed or it is the destination cell
if x - 1 >= 0 and (mat[x - 1][y] == 1 or mat[x-1][y] == 3) :
# if distance to reach the cell to the up is less than the computed previous path distance, update it
if dist[x][y] + 1 < dist[x - 1][y] :
dist[x - 1][y] = dist[x][y] + 1
next = Node(x - 1, y)
q.put(next)
# If move towards down is allowed or it is the destination cell
if x + 1 < row and (mat[x + 1][y] == 1 or mat[x+1][y] == 3) :
# if distance to reach the cell to the down is less than the computed previous path distance, update it
if dist[x][y] + 1 < dist[x + 1][y] :
dist[x + 1][y] = dist[x][y] + 1
next = Node(x + 1, y)
q.put(next)
return dist[destination_i][destination_j]
row = 5
col = 5
mat = [ [1, 0, 0, 2, 1],
[1, 0, 2, 1, 1],
[0, 1, 1, 1, 0],
[3, 2, 0, 0, 1],
[3, 1, 0, 0, 1] ]
answer = findDistance(row, col, mat);
if answer == INF :
print("No Path Found")
else:
print("The Shortest Distance between Source and Destination is:")
print(answer)输出
The Shortest Distance between Source and Destination is:2
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP