检查给定图是否为树
在这个问题中,给定一个无向图,我们需要检查该图是否为树。我们可以通过检查树的标准来简单地找到它。树不包含环,因此如果图中存在任何环,则它不是树。

我们可以使用另一种方法来检查它,如果图是连通的并且它有 V-1 条边,它可能是一棵树。这里 V 是图中顶点的数量。
输入和输出
Input: The adjacency matrix. 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 Output: The Graph is a tree
算法
isCycle(u, visited, parent)
输入:起始顶点 u,visited 列表用于标记是否已访问,父顶点。
输出:如果图中存在环则返回 True。
Begin mark u as visited for all vertex v which are adjacent with u, do if v is visited, then if isCycle(v, visited, u) = true, then return true else if v ≠ parent, then return true done return false End
isTree(graph)
输入:无向图。
输出:当图是树时返回 True。
Begin define a visited array to mark which node is visited or not initially mark all node as unvisited if isCycle(0, visited, φ) is true, then //the parent of starting vertex is null return false if the graph is not connected, then return false return true otherwise End
示例
#include<iostream>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{0, 0, 0, 1, 0}
};
bool isCycle(int u, bool visited[], int parent) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v]) { //when the adjacent node v is not visited
if(isCycle(v, visited, u)) {
return true;
}
} else if(v != parent) { //when adjacent vertex is visited but not parent
return true; //there is a cycle
}
}
}
return false;
}
bool isTree() {
bool *vis = new bool[NODE];
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
if(isCycle(0, vis, -1)) //check if there is a cycle or not
return false;
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
return true;
}
int main() {
if(isTree())
cout << "The Graph is a Tree.";
else
cout << "The Graph is not a Tree.";
}输出
The Graph is a Tree.
广告
数据结构
网络
关系数据库管理系统
操作系统
Java
iOS
HTML
CSS
Android
Python
C 编程
C++
C#
MongoDB
MySQL
Javascript
PHP