在 NumPy 中计算连续元素之间的差值并添加和追加数字数组
要计算掩码数组中连续元素之间的差异,请在 Python NumPy 中使用 **MaskedArray.ediff1d()** 方法。
“**to_begin**”参数设置要添加到返回的差异开头处的数字数组。“**to_end**”参数设置要添加到返回的差异末尾处的数字数组。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值均无效,要么是布尔值数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建具有整数元素的数组 -
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr)
创建掩码数组并掩盖其中一些为无效 -
maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]]) print("
Our Masked Array...
", maskArr)
获取掩码数组的类型 -
print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状 -
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素数量 -
print("
Number of elements in the Masked Array...
",maskArr.size)
要计算掩码数组中连续元素之间的差异,请使用 MaskedArray.ediff1d() -
prepArr = np.array([-4, -3, -2, -1]) appeArr = np.array([997, 998, 999]) print("
Result..
.", np.ediff1d(maskArr, to_begin = prepArr, to_end=appeArr))
示例
# Python ma.MaskedArray - Compute the differences between consecutive elements # and prepend & append array of numbers import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]]) print("
Our Masked Array...
", maskArr) # Get the type of the masked array print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Number of elements in the Masked Array...
",maskArr.size) # To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy # The "to_begin" parameter sets the array of number(s) to prepend at the start of the returned differences. # The "to_end" parameter sets the array of number(s) to append at theend of the returned differences. prepArr = np.array([-4, -3, -2, -1]) appeArr = np.array([997, 998, 999]) print("
Result..
.", np.ediff1d(maskArr, to_begin = prepArr, to_end=appeArr))
输出
Array... [[65 68 81] [93 33 76] [73 88 51] [62 45 67]] Our Masked Array... [[-- 68 81] [93 33 76] [73 -- 51] [62 45 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Number of elements in the Masked Array... 12 Result.. [ -4 -3 -2 -1 3 13 12 -60 43 -3 15 -37 11 -17 22 997 998 999]
广告