计算 NumPy 中连续元素之间的差值并追加数字
要计算掩码数组中连续元素之间的差值,请在 Python NumPy 中使用 **MaskedArray.ediff1d()** 方法。“**to_end**”参数设置要追加到返回差值末尾的数字。
此函数等效于考虑掩码值的 numpy.ediff1d,有关详细信息,请参阅 numpy.ediff1d。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask(表示关联数组的任何值均有效),要么是布尔值数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np
使用 numpy.array() 方法创建一个包含整数元素的数组:
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr)
创建一个掩码数组,并将其中一些标记为无效:
maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]]) print("
Our Masked Array...
", maskArr)
获取掩码数组的类型:
print("
Our Masked Array type...
", maskArr.dtype)
获取掩码数组的维度:
print("
Our Masked Array Dimensions...
",maskArr.ndim)
获取掩码数组的形状:
print("
Our Masked Array Shape...
",maskArr.shape)
获取掩码数组的元素个数:
print("
Number of elements in the Masked Array...
",maskArr.size)
要计算掩码数组中连续元素之间的差值,请在 Python NumPy 中使用 MaskedArray.ediff1d() 方法。“to_end”参数设置要追加到返回差值末尾的数字。
print("
Result..
.", np.ediff1d(maskArr, to_end=999))
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]]) print("Array...
", arr) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]]) print("
Our Masked Array...
", maskArr) # Get the type of the masked array print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Number of elements in the Masked Array...
",maskArr.size) # To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy # The "to_end" parameter sets the number(s) to append at the end of the returned differences. print("
Result..
.", np.ediff1d(maskArr, to_end=999))
输出
Array... [[65 68 81] [93 33 76] [73 88 51] [62 45 67]] Our Masked Array... [[-- 68 81] [93 33 76] [73 -- 51] [62 45 67]] Our Masked Array type... int64 Our Masked Array Dimensions... 2 Our Masked Array Shape... (4, 3) Number of elements in the Masked Array... 12 Result.. . [ 3 13 12 -60 43 -3 15 -37 11 -17 22 999]
广告