计算 NumPy 中连续元素之间的差值并追加数字数组


要计算掩码数组中连续元素之间的差值,请在 Python NumPy 中使用 **MaskedArray.ediff1d()** 方法。“**to_end**”参数设置要追加到返回差值末尾的数字数组。

此函数等效于考虑掩码值的 numpy.ediff1d,详情请参见 numpy.ediff1d。

掩码数组是标准 numpy.ndarray 和掩码的组合。掩码可以是 nomask(表示关联数组中没有无效值),也可以是布尔数组,用于确定关联数组中每个元素的值是否有效。

步骤

首先,导入所需的库:

import numpy as np

使用 numpy.array() 方法创建一个包含整数元素的数组:

arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr)

创建一个掩码数组并将其中的某些元素标记为无效:

maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]])
print("
Our Masked Array...
", maskArr)

获取掩码数组的类型:

print("
Our Masked Array type...
", maskArr.dtype)

获取掩码数组的维度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

获取掩码数组的形状:

print("
Our Masked Array Shape...
",maskArr.shape)

获取掩码数组的元素个数:

print("
Number of elements in the Masked Array...
",maskArr.size)

要计算掩码数组中连续元素之间的差值,请在 Python NumPy 中使用 MaskedArray.ediff1d() 方法。“to_end”参数设置要追加到返回差值末尾的数字数组:

appendArr = np.array([996, 997, 998, 999])
print("
Result..
.", np.ediff1d(maskArr, to_end=appendArr))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[65, 68, 81], [93, 33, 76], [73, 88, 51], [62, 45, 67]])
print("Array...
", arr) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 0, 0], [ 0, 0, 0], [0, 1, 0], [0, 0, 0]]) print("
Our Masked Array...
", maskArr) # Get the type of the masked array print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Number of elements in the Masked Array...
",maskArr.size) # To compute the differences between consecutive elements of a masked array, use the MaskedArray.ediff1d() method in Python Numpy # The "to_end" parameter sets the array of number(s) to append at the end of the returned differences. appendArr = np.array([996, 997, 998, 999]) print("
Result..
.", np.ediff1d(maskArr, to_end=appendArr))

输出

Array...
[[65 68 81]
[93 33 76]
[73 88 51]
[62 45 67]]

Our Masked Array...
[[-- 68 81]
[93 33 76]
[73 -- 51]
[62 45 67]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 3)

Number of elements in the Masked Array...
12

Result..
. [ 3 13 12 -60 43 -3 15 -37 11 -17 22 996 997 998 999]

更新于:2022年2月5日

浏览量:132

开启你的职业生涯

完成课程获得认证

开始学习
广告