在 NumPy 中显示当前掩码


要显示当前掩码,请在 Python NumPy 中使用 **ma.MaskedArray.mask**。掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值均有效,要么是布尔数组,用于确定关联数组的每个元素的值是否有效。

NumPy 提供了全面的数学函数、随机数生成器、线性代数例程、傅里叶变换等。它支持各种硬件和计算平台,并且可以很好地与分布式、GPU 和稀疏数组库配合使用。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用 numpy.arange() 方法创建一个包含 int 元素的 4x4 数组:

arr = np.arange(16).reshape((4,4))
print("Array...
", arr)

获取数组的维度:

print("
Array Dimensions...
",arr.ndim)

获取数组的形状:

print("
Our Masked Array Shape...
",arr.shape)

获取数组的元素数量:

print("
Elements in the Masked Array...
",arr.size)

创建一个掩码数组:

arr = ma.array(arr)

arr[0, 1] = ma.masked
arr[1, 1] = ma.masked
arr[2, 1] = ma.masked
arr[2, 2] = ma.masked
arr[3, 0] = ma.masked
arr[3, 2] = ma.masked
arr[3, 3] = ma.masked

沿特定轴计算掩码元素的数量:

print("
The number of masked elements...
",ma.count_masked(arr, axis = 1))

返回掩码数组的掩码:

print("
The mask of a masked array...
",ma.getmask(arr))

将掩码数组的数据作为 ndarray 返回:

print("
Data of a masked array as an ndarray...
",ma.getdata(arr))

确定输入是否为掩码数组的实例:

print("
Whether input is an instance of masked array?
",ma.isMaskedArray(arr))

要显示当前掩码,请在 Python NumPy 中使用 ma.MaskedArray.mask:

print("
Result...
",arr.mask)

示例

# Python ma.MaskedArray - Display the current mask

import numpy as np
import numpy.ma as ma

# Creating a 4x4 array with int elements using the numpy.arange() method
arr = np.arange(16).reshape((4,4))
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # Count the number of masked elements along specific axis print("
The number of masked elements...
",ma.count_masked(arr, axis = 1)) # Return the mask of a masked array print("
The mask of a masked array...
",ma.getmask(arr)) # Return the data of a masked array as an ndarray print("
Data of a masked array as an ndarray...
",ma.getdata(arr)) # Determine whether input is an instance of masked array print("
Whether input is an instance of masked array?
",ma.isMaskedArray(arr)) # To display the current mask, use the ma.MaskedArray.mask in Python Numpy print("
Result...
",arr.mask)

输出

Array...
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]

Array type...
int64

Array Dimensions...
2

Our Array type...
int64

Our Masked Array Shape...
(4, 4)

Elements in the Masked Array...
16

The number of masked elements...
[1 1 2 3]

The mask of a masked array...
[[False True False False]
[False True False False]
[False True True False]
[ True False True True]]

Data of a masked array as an ndarray...
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]]

Whether input is an instance of masked array?
True

Result...
[[False True False False]
[False True False False]
[False True True False]
[ True False True True]]

更新于: 2022年2月3日

191 次查看

开启你的 职业生涯

通过完成课程获得认证

立即开始
广告

© . All rights reserved.