在NumPy中掩盖数据完全等于某个值的数组


要掩盖数据完全等于某个值的数组,请使用Python NumPy中的**numpy.ma.masked_object()**方法。此函数类似于masked_values,但仅适用于对象数组:对于浮点数,请改用masked_values。

掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组的任何值均有效),要么是布尔数组,用于确定关联数组的每个元素的值是否有效。

步骤

首先,导入所需的库:

import numpy as np
import numpy.ma as ma

使用numpy.array()方法创建一个包含整数元素的数组:

arr = np.array([[71, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]])
print("Array...
", arr)

获取数组的类型:

print("
Array type...
", arr.dtype)

获取数组的维度:

print("
Array Dimensions...
",arr.ndim)

获取数组的形状:

print("
Our Array Shape...
",arr.shape)

获取数组的元素个数:

print("
Number of Elements in the Array...
",arr.size)

要掩盖数据完全等于某个值的数组,请使用Python NumPy中的numpy.ma.masked_object()方法:

print("
Result...
",np.ma.masked_object(arr, 82))

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[71, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]])
print("Array...
", arr) # Get the type pf array print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Number of Elements in the Array...
",arr.size) # To mask an array where the data is exactly equal to value, use the numpy.ma.masked_object() method in Python Numpy print("
Result...
",np.ma.masked_object(arr, 82))

输出

Array...
[[71 55 91]
[82 33 39]
[73 82 51]
[90 45 82]]

Array type...
int64

Array Dimensions...
2

Our Array Shape...
(4, 3)

Number of Elements in the Array...
12

Result...
[[71 55 91]
[-- 33 39]
[73 -- 51]
[90 45 --]]

更新于:2022年2月4日

778 次浏览

启动你的职业生涯

完成课程获得认证

开始学习
广告
© . All rights reserved.