在NumPy中掩盖数据完全等于某个值的数组
要掩盖数据完全等于某个值的数组,请使用Python NumPy中的**numpy.ma.masked_object()**方法。此函数类似于masked_values,但仅适用于对象数组:对于浮点数,请改用masked_values。
掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组的任何值均有效),要么是布尔数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[71, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]])
print("Array...
", arr)获取数组的类型:
print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)获取数组的形状:
print("
Our Array Shape...
",arr.shape)
获取数组的元素个数:
print("
Number of Elements in the Array...
",arr.size)要掩盖数据完全等于某个值的数组,请使用Python NumPy中的numpy.ma.masked_object()方法:
print("
Result...
",np.ma.masked_object(arr, 82))
示例
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([[71, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]])
print("Array...
", arr)
# Get the type pf array
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Get the shape of the Array
print("
Our Array Shape...
",arr.shape)
# Get the number of elements of the Array
print("
Number of Elements in the Array...
",arr.size)
# To mask an array where the data is exactly equal to value, use the numpy.ma.masked_object() method in Python Numpy
print("
Result...
",np.ma.masked_object(arr, 82))输出
Array... [[71 55 91] [82 33 39] [73 82 51] [90 45 82]] Array type... int64 Array Dimensions... 2 Our Array Shape... (4, 3) Number of Elements in the Array... 12 Result... [[71 55 91] [-- 33 39] [73 -- 51] [90 45 --]]
广告
数据结构
网络
关系型数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP