NumPy中掩盖等于给定值的数组元素
要掩盖等于给定值的数组,请在Python NumPy中使用**numpy.ma.masked_equal()**方法。此函数是masked_where的快捷方式,条件为(x == value)。对于浮点数组,请考虑使用masked_values(x, value)。
掩码数组是标准numpy.ndarray和掩码的组合。掩码要么是nomask(表示关联数组的任何值均有效),要么是布尔数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用numpy.array()方法创建一个包含整数元素的数组:
arr = np.array([[74, 55, 91], [93, 33, 39], [73, 93, 51], [93, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)
获取数组的形状:
print("
Our Array Shape...
",arr.shape)
获取数组的元素个数:
print("
Elements in the Array...
",arr.size)
要掩盖等于给定值的数组,请使用numpy.ma.masked_equal()方法:
print("
Result...
",np.ma.masked_equal(arr, 93))
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[74, 55, 91], [93, 33, 39], [73, 93, 51], [93, 45, 67]]) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Array...
",arr.size) # To mask an array where equal to a given value, use the numpy.ma.masked_equal() method in Python Numpy print("
Result...
",np.ma.masked_equal(arr, 93))
输出
Array... [[74 55 91] [93 33 39] [73 93 51] [93 45 67]] Array type... int64 Array Dimensions... 2 Our Array Shape... (4, 3) Elements in the Array... 12 Result... [[74 55 91] [-- 33 39] [73 -- 51] [-- 45 67]]
广告