NumPy 中掩盖不等于给定值的数组元素
要掩盖不等于给定值的数组,请在 Python NumPy 中使用 **numpy.ma.masked_not_equal()** 方法。此函数是 masked_where 的快捷方式,条件为 (x != value)。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值均有效,要么是布尔值数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库:
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法创建一个包含整数元素的数组:
arr = np.array([[83, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]]) print("Array...
", arr)
获取数组的类型:
print("
Array type...
", arr.dtype)
获取数组的维度:
print("
Array Dimensions...
",arr.ndim)
获取数组的形状:
print("
Our Array Shape...
",arr.shape)
获取数组的元素个数:
print("
Number of Elements in the Array...
",arr.size)
要掩盖不等于给定值的数组,请在 Python NumPy 中使用 numpy.ma.masked_not_equal() 方法:
print("
Result...
",np.ma.masked_not_equal(arr, 82))
示例
import numpy as np import numpy.ma as ma # Create an array with int elements using the numpy.array() method arr = np.array([[83, 55, 91], [82, 33, 39], [73, 82, 51], [90, 45, 82]]) print("Array...
", arr) # Get the type pf array print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Get the shape of the Array print("
Our Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Number of Elements in the Array...
",arr.size) # To mask an array where not equal to a given value, use the numpy.ma.masked_not_equal() method in Python Numpy print("
Result...
",np.ma.masked_not_equal(arr, 82))
输出
Array... [[83 55 91] [82 33 39] [73 82 51] [90 45 82]] Array type... int64 Array Dimensions... 2 Our Array Shape... (4, 3) Number of Elements in the Array... 12 Result... [[-- -- --] [82 -- --] [-- 82 --] [-- -- 82]]
广告