- DocumentDB SQL 教程
- DocumentDB SQL - 首页
- DocumentDB SQL - 概述
- DocumentDB SQL - SELECT 语句
- DocumentDB SQL - FROM 语句
- DocumentDB SQL - WHERE 语句
- DocumentDB SQL - 运算符
- DocumentDB - BETWEEN 关键字
- DocumentDB SQL - IN 关键字
- DocumentDB SQL - VALUE 关键字
- DocumentDB SQL - ORDER BY 语句
- DocumentDB SQL - 迭代
- DocumentDB SQL - 连接
- DocumentDB SQL - 别名
- DocumentDB SQL - 数组创建
- DocumentDB - 标量表达式
- DocumentDB SQL - 参数化
- DocumentDB SQL - 内置函数
- LINQ to SQL 转换
- JavaScript 集成
- 用户自定义函数
- 复合 SQL 查询
- DocumentDB SQL 有用资源
- DocumentDB SQL - 快速指南
- DocumentDB SQL - 有用资源
- DocumentDB SQL - 讨论
DocumentDB SQL - 快速指南
DocumentDB SQL - 概述
DocumentDB 是微软最新的 NoSQL 文档数据库平台,运行在 Azure 上。在本教程中,我们将学习有关使用 DocumentDB 支持的 SQL 特殊版本查询文档的所有内容。
NoSQL 文档数据库
DocumentDB 是微软最新的 NoSQL 文档数据库,但是,当我们说 NoSQL 文档数据库时,我们究竟指的是 NoSQL 和文档数据库?
SQL 代表结构化查询语言,它是关系数据库的传统查询语言。SQL 通常等同于关系数据库。
将 NoSQL 数据库视为非关系数据库更有帮助,因此 NoSQL 实际上意味着非关系型。
NoSQL 数据库有不同的类型,包括键值存储,例如 -
- Azure 表存储
- 基于列的存储,例如 Cassandra
- 图形数据库,例如 NEO4
- 文档数据库,例如 MongoDB 和 Azure DocumentDB
为什么使用 SQL 语法?
这乍一看可能很奇怪,但在 DocumentDB(一个 NoSQL 数据库)中,我们使用 SQL 进行查询。如上所述,这是基于 JSON 和 JavaScript 语义的 SQL 的特殊版本。
SQL 仅仅是一种语言,但它也是一种非常流行的语言,功能丰富且表达力强。因此,使用某种 SQL 方言而不是想出一种全新的查询表达方式似乎是一个好主意,如果要从数据库中获取文档,则需要学习这种新方式。
SQL 是为关系数据库设计的,而 DocumentDB 是非关系型文档数据库。DocumentDB 团队实际上已经为文档数据库的非关系型世界改编了 SQL 语法,这就是将 SQL 根植于 JSON 和 JavaScript 的含义。
该语言的读取方式仍然与熟悉的 SQL 相似,但语义都基于无模式的 JSON 文档,而不是关系表。在 DocumentDB 中,我们将使用 JavaScript 数据类型而不是 SQL 数据类型。我们将熟悉 SELECT、FROM、WHERE 等,但使用 JavaScript 类型,这些类型仅限于数字和字符串、对象、数组、布尔值和 null,比 SQL 数据类型的广泛范围少得多。
类似地,表达式将作为 JavaScript 表达式而不是某种形式的 T-SQL 进行计算。例如,在非规范化数据的世界中,我们不处理行和列,而是处理包含嵌套数组和对象的层次结构的无模式文档。
SQL 是如何工作的?
DocumentDB 团队已经以多种创新方式回答了这个问题。其中一些列出如下 -
首先,假设您没有更改默认行为以自动为文档中的每个属性建立索引,您可以在查询中使用点表示法来导航到任何属性的路径,无论它在文档中嵌套多深。
您还可以执行文档内联接,其中嵌套数组元素与其父元素在文档内联接,方式与在关系世界中两个表之间执行联接的方式非常相似。
您的查询可以按原样从数据库中返回文档,或者您可以根据您想要的部分或全部文档数据投射任何自定义 JSON 形状。
DocumentDB 中的 SQL 支持许多常用运算符,包括 -
算术和位运算
AND 和 OR 逻辑
相等和范围比较
字符串连接
查询语言还支持大量内置函数。
DocumentDB SQL - SELECT 语句
Azure 门户有一个查询资源管理器,允许我们对 DocumentDB 数据库运行任何 SQL 查询。我们将使用查询资源管理器来演示查询语言的许多不同功能和特性,从最简单的查询开始。
步骤 1 - 打开 Azure 门户,并在数据库刀片中,单击查询资源管理器刀片。
请记住,查询在集合的范围内运行,因此查询资源管理器允许我们在此下拉列表中选择集合。我们将保持其设置为我们的 Families 集合,其中包含三个文档。让我们在此示例中考虑这三个文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
查询资源管理器以这个简单的查询 SELECT * FROM c 打开,它只是从集合中检索所有文档。虽然它很简单,但它仍然与关系数据库中的等效查询大不相同。
步骤 2 - 在关系数据库中,SELECT * 表示返回所有列,而在 DocumentDB 中。这意味着您希望结果中的每个文档都按其在数据库中的存储方式返回。
但是,当您选择特定的属性和表达式而不是简单地发出 SELECT * 时,您就会为结果中的每个文档投射一个新的形状。
步骤 3 - 单击“运行”以执行查询并打开结果刀片。
可以看到检索了 WakefieldFamily、SmithFamily 和 AndersonFamily。
以下是作为 SELECT * FROM c 查询结果检索到的三个文档。
[ { "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false, "_rid": "Ic8LAJFujgECAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgECAAAAAAAAAA==/", "_etag": "\"00000500-0000-0000-0000-567582370000\"", "_attachments": "attachments/" }, { "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true, "_rid": "Ic8LAJFujgEDAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgEDAAAAAAAAAA==/", "_etag": "\"00000600-0000-0000-0000-567582370000\"", "_attachments": "attachments/" }, { "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ "givenName": "Fluffy", "type": "Rabbit" ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true, "_rid": "Ic8LAJFujgEEAAAAAAAAAA==", "_ts": 1450541624, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgEEAAAAAAAAAA==/", "_etag": "\"00000700-0000-0000-0000-567582380000\"", "_attachments": "attachments/" } ]
但是,这些结果还包括以下划线字符为前缀的所有系统生成的属性。
DocumentDB SQL - FROM 语句
在本章中,我们将介绍 FROM 语句,它的工作原理与常规 SQL 中的标准 FROM 语句完全不同。
查询始终在特定集合的上下文中运行,并且不能跨集合中的文档进行联接,这让我们想知道为什么我们需要 FROM 语句。事实上,我们不需要,但如果我们不包含它,那么我们将无法查询集合中的文档。
此语句的目的是指定查询必须在其上运行的数据源。通常整个集合都是源,但可以指定集合的子集。除非源在查询的后面被过滤或投影,否则 FROM <from_specification> 语句是可选的。
让我们再看一下同一个例子。以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
在上面的查询中,“SELECT * FROM c”表示整个 Families 集合是枚举的源。
子文档
源也可以缩减到较小的子集。当我们只想检索每个文档中的一个子树时,子根可以成为源,如下例所示。
当我们运行以下查询时 -
SELECT * FROM Families.parents
将检索以下子文档。
[ [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ] ]
由于此查询的结果,我们可以看到只检索了 parents 子文档。
DocumentDB SQL - WHERE 语句
在本章中,我们将介绍 WHERE 语句,它与 FROM 语句一样是可选的。它用于在检索源提供的 JSON 文档形式的数据时指定条件。任何 JSON 文档都必须评估指定的条件为“true”才能被视为结果。如果满足给定的条件,则仅返回 JSON 文档形式的特定数据。我们可以使用 WHERE 语句过滤记录并仅获取必要的记录。
我们将在本例中考虑相同的三个文档。以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们看一个使用 WHERE 语句的简单示例。
在此查询中,在 WHERE 语句中,指定了 (WHERE f.id = "WakefieldFamily") 条件。
SELECT * FROM f WHERE f.id = "WakefieldFamily"
执行上述查询时,它将返回 WakefieldFamily 的完整 JSON 文档,如以下输出所示。
[ { "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false, "_rid": "Ic8LAJFujgECAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgECAAAAAAAAAA==/", "_etag": "\"00000500-0000-0000-0000-567582370000\"", "_attachments": "attachments/" } ]
DocumentDB SQL - 运算符
运算符是主要用于 SQL WHERE 语句中执行操作(例如比较和算术运算)的保留字或字符。DocumentDB SQL 也支持各种标量表达式。最常用的表达式是二元和一元表达式。
目前支持以下 SQL 运算符,可用于查询。
SQL 比较运算符
以下是 DocumentDB SQL 语法中所有可用比较运算符的列表。
序号 | 运算符和描述 |
---|---|
1 | = 检查两个操作数的值是否相等。如果是,则条件变为真。 |
2 | != 检查两个操作数的值是否相等。如果值不相等,则条件变为真。 |
3 | <> 检查两个操作数的值是否相等。如果值不相等,则条件变为真。 |
4 | > 检查左操作数的值是否大于右操作数的值。如果是,则条件变为真。 |
5 | < 检查左操作数的值是否小于右操作数的值。如果是,则条件变为真。 |
6 | >= 检查左操作数的值是否大于或等于右操作数的值。如果是,则条件变为真。 |
7 | <= 检查左操作数的值是否小于或等于右操作数的值。如果是,则条件变为真。 |
SQL 逻辑运算符
以下是 DocumentDB SQL 语法中所有可用逻辑运算符的列表。
序号 | 运算符和描述 |
---|---|
1 | AND AND 运算符允许 SQL 语句的 WHERE 子句中存在多个条件。 |
2 | BETWEEN BETWEEN 运算符用于搜索位于给定最小值和最大值的一组值内的值。 |
3 | IN IN 运算符用于将值与已指定的文字值列表进行比较。 |
4 | OR OR 运算符用于组合 SQL 语句的 WHERE 子句中的多个条件。 |
5 | NOT NOT 运算符反转与其一起使用的逻辑运算符的含义。例如,NOT EXISTS、NOT BETWEEN、NOT IN 等。这是一个否定运算符。 |
SQL 算术运算符
以下是 DocumentDB SQL 语法中所有可用算术运算符的列表。
序号 | 运算符和描述 |
---|---|
1 | + 加法 - 将运算符两侧的值相加。 |
2 | - 减法 - 从左操作数中减去右操作数。 |
3 | * 乘法 - 将运算符两侧的值相乘。 |
4 | / 除法 - 将左操作数除以右操作数。 |
5 | % 模数 - 将左操作数除以右操作数并返回余数。 |
我们也将在本例中考虑相同的文档。以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们看一个在 WHERE 子句中使用比较运算符的简单示例。
在此查询中,在 WHERE 子句中,指定了 (WHERE f.id = "WakefieldFamily") 条件,它将检索 id 等于 WakefieldFamily 的文档。
SELECT * FROM f WHERE f.id = "WakefieldFamily"
执行上述查询时,它将返回 WakefieldFamily 的完整 JSON 文档,如以下输出所示。
[ { "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false, "_rid": "Ic8LAJFujgECAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgECAAAAAAAAAA==/", "_etag": "\"00000500-0000-0000-0000-567582370000\"", "_attachments": "attachments/" } ]
让我们看另一个示例,其中查询将检索成绩大于 5 的 children 数据。
SELECT * FROM Families.children[0] c WHERE (c.grade > 5)
执行上述查询时,它将检索以下子文档,如输出所示。
[ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] } ]
DocumentDB SQL - BETWEEN 关键字
BETWEEN 关键字用于表达针对值范围的查询,就像在 SQL 中一样。BETWEEN 可以用于字符串或数字。DocumentDB 中使用 BETWEEN 与 ANSI SQL 的主要区别在于,您可以针对混合类型的属性表达范围查询。
例如,在某些文档中,您可能将“grade”作为数字,而在其他文档中,它可能是字符串。在这些情况下,两种不同类型结果之间的比较是“未定义的”,并且将跳过该文档。
让我们考虑前面示例中的三个文档。以下是 **AndersenFamily** 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个示例,其中查询返回所有第一个孩子的年级在 1-5(包括两者)之间的家庭文档。
以下是使用 BETWEEN 关键字然后使用 AND 逻辑运算符的查询。
SELECT * FROM Families.children[0] c WHERE c.grade BETWEEN 1 AND 5
执行上述查询时,会产生以下输出。
[ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ]
要显示超出前一个示例范围的年级,请使用 NOT BETWEEN,如下面的查询所示。
SELECT * FROM Families.children[0] c WHERE c.grade NOT BETWEEN 1 AND 5
执行此查询时,会产生以下输出。
[ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] } ]
DocumentDB SQL - IN 关键字
IN 关键字可用于检查指定值是否与列表中的任何值匹配。IN 运算符允许您在 WHERE 子句中指定多个值。IN 等效于链接多个 OR 子句。
类似的三个文档被视为在前面的示例中所做的那样。以下是 **AndersenFamily** 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个简单的示例。
以下是将检索 familyName 为“Smith”或 Wakefield 的数据的查询。
SELECT * FROM Families.parents[0] f WHERE f.familyName IN ('Smith', 'Wakefield')
执行上述查询时,会产生以下输出。
[ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Smith", "givenName": "James" } ]
让我们考虑另一个简单的示例,其中将检索所有 id 为“SmithFamily”或“AndersenFamily”的家庭文档。以下是查询。
SELECT * FROM Families WHERE Families.id IN ('SmithFamily', 'AndersenFamily')
执行上述查询时,会产生以下输出。
[ { "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true, "_rid": "Ic8LAJFujgEDAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgEDAAAAAAAAAA==/", "_etag": "\"00000600-0000-0000-0000-567582370000\"", "_attachments": "attachments/" }, { "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true, "_rid": "Ic8LAJFujgEEAAAAAAAAAA==", "_ts": 1450541624, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgEEAAAAAAAAAA==/", "_etag": "\"00000700-0000-0000-0000-567582380000\"", "_attachments": "attachments/" } ]
DocumentDB SQL - VALUE 关键字
当您知道只返回单个值时,VALUE 关键字可以通过避免创建完整对象的开销来帮助生成更精简的结果集。VALUE 关键字提供了一种返回 JSON 值的方法。
让我们来看一个简单的示例。
以下是使用 VALUE 关键字的查询。
SELECT VALUE "Hello World, this is DocumentDB SQL Tutorial"
执行此查询时,它将返回标量“Hello World, this is DocumentDB SQL Tutorial”。
[ "Hello World, this is DocumentDB SQL Tutorial" ]
在另一个示例中,让我们考虑前面示例中的三个文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
以下是查询。
SELECT VALUE f.location FROM Families f
执行此查询时,它将返回地址,但不带位置标签。
[ { "state": "NY", "county": "Manhattan", "city": "NY" }, { "state": "NY", "county": "Queens", "city": "Forest Hills" }, { "state": "WA", "county": "King", "city": "Seattle" } ]
如果我们现在在没有 VALUE 关键字的情况下指定相同的查询,则它将返回带位置标签的地址。以下是查询。
SELECT f.location FROM Families f
执行此查询时,会产生以下输出。
[ { "location": { "state": "NY", "county": "Manhattan", "city": "NY" } }, { "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" } }, { "location": { "state": "WA", "county": "King", "city": "Seattle" } } ]
DocumentDB SQL - ORDER BY 语句
Microsoft Azure DocumentDB 支持使用 SQL 对 JSON 文档进行文档查询。您可以使用查询中的 ORDER BY 子句对集合中的数字和字符串进行排序。该子句可以包含一个可选的 ASC/DESC 参数,以指定必须检索结果的顺序。
我们将考虑与前面示例中相同的文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个简单的示例。
以下是包含 ORDER BY 关键字的查询。
SELECT f.id, f.children[0].givenName,f.children[0].grade FROM Families f ORDER BY f.children[0].grade
执行上述查询时,会产生以下输出。
[ { "id": "SmithFamily", "givenName": "Michelle", "grade": 1 }, { "id": "AndersenFamily", "grade": 5 }, { "id": "WakefieldFamily", "givenName": "Jesse", "grade": 6 } ]
让我们考虑另一个简单的示例。
以下是包含 ORDER BY 关键字和 DESC 可选关键字的查询。
SELECT f.id, f.parents[0].familyName FROM Families f ORDER BY f.parents[0].familyName DESC
执行上述查询时,将产生以下输出。
[ { "id": "WakefieldFamily", "familyName": "Wakefield" }, { "id": "SmithFamily", "familyName": "Smith" }, { "id": "AndersenFamily" } ]
DocumentDB SQL - 迭代
在 DocumentDB SQL 中,Microsoft 添加了一个新的构造,它可以与 IN 关键字一起使用,以提供对 JSON 数组进行迭代的支持。在 FROM 子句中提供了迭代支持。
我们将再次考虑前面示例中的三个类似文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个在 FROM 子句中没有 IN 关键字的简单示例。
以下是将返回 Families 集合中所有父母的查询。
SELECT * FROM Families.parents
执行上述查询时,会产生以下输出。
[ [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ] ]
如上述输出所示,每个家庭的父母都显示在单独的 JSON 数组中。
让我们来看同一个示例,但是这次我们将在 FROM 子句中使用 IN 关键字。
以下是包含 IN 关键字的查询。
SELECT * FROM c IN Families.parents
执行上述查询时,会产生以下输出。
[ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" }, { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" }, { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } { "id": "WakefieldFamily", "givenName": "Jesse", "grade": 6 } ]
在上面的示例中,可以看到,通过迭代,对集合中的父母执行迭代的查询具有不同的输出数组。因此,每个家庭的所有父母都添加到单个数组中。
DocumentDB SQL - 连接
在关系数据库中,Joins 子句用于组合数据库中两个或多个表中的记录,并且在设计规范化模式时,跨表连接的需求非常重要。由于 DocumentDB 处理无模式文档的非规范化数据模型,因此 DocumentDB SQL 中的 JOIN 等效于“自连接”。
让我们考虑前面示例中的三个文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个示例,以了解 JOIN 子句的工作原理。
以下是将根连接到子文档 children 的查询。
SELECT f.id FROM Families f JOIN c IN f.children
执行上述查询时,将产生以下输出。
[ { "id": "WakefieldFamily" }, { "id": "WakefieldFamily" }, { "id": "SmithFamily" }, { "id": "SmithFamily" }, { "id": "AndersenFamily" } ]
在上面的示例中,连接在文档根和子根 children 之间,它在两个 JSON 对象之间进行交叉积。以下是一些需要注意的事项 -
在 FROM 子句中,JOIN 子句是一个迭代器。
前两个文档 WakefieldFamily 和 SmithFamily 包含两个孩子,因此结果集也包含产生每个孩子的单独对象的交叉积。
第三个文档 AndersenFamily 只包含一个孩子,因此此文档只有一个对应的对象。
让我们来看同一个示例,但是这次我们还检索子名称,以便更好地理解 JOIN 子句。
以下是将根连接到子文档 children 的查询。
SELECT f.id AS familyName, c.givenName AS childGivenName, c.firstName AS childFirstName FROM Families f JOIN c IN f.children
执行上述查询时,会产生以下输出。
[ { "familyName": "WakefieldFamily", "childGivenName": "Jesse" }, { "familyName": "WakefieldFamily", "childGivenName": "Lisa" }, { "familyName": "SmithFamily", "childGivenName": "Michelle" }, { "familyName": "SmithFamily", "childGivenName": "John" }, { "familyName": "AndersenFamily", "childFirstName": "Henriette Thaulow" } ]
DocumentDB SQL - 别名
在关系数据库中,SQL 别名用于临时重命名表或列标题。类似地,在 DocumentDB 中,别名用于临时重命名 JSON 文档、子文档、对象或任何字段。
重命名是一个临时更改,实际文档不会更改。基本上,创建别名是为了使字段/文档名称更易读。对于别名,使用 AS 关键字,该关键字是可选的。
让我们考虑前面示例中使用的三个类似文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个示例来讨论别名。
以下是将根连接到子文档 children 的查询。我们有别名,例如 f.id AS familyName、c.givenName AS childGivenName 和 c.firstName AS childFirstName。
SELECT f.id AS familyName, c.givenName AS childGivenName, c.firstName AS childFirstName FROM Families f JOIN c IN f.children
执行上述查询时,会产生以下输出。
[ { "familyName": "WakefieldFamily", "childGivenName": "Jesse" }, { "familyName": "WakefieldFamily", "childGivenName": "Lisa" }, { "familyName": "SmithFamily", "childGivenName": "Michelle" }, { "familyName": "SmithFamily", "childGivenName": "John" }, { "familyName": "AndersenFamily", "childFirstName": "Henriette Thaulow" } ]
上述输出显示字段名称已更改,但这是一个临时更改,原始文档未修改。
DocumentDB SQL - 数组创建
在 DocumentDB SQL 中,Microsoft 添加了一个关键功能,借助该功能,我们可以轻松地创建一个数组。这意味着当我们运行查询时,结果将创建一个类似于 JSON 对象的集合数组作为查询的结果。
让我们考虑与前面示例中相同的文档。
以下是 AndersenFamily 文档。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
以下是 SmithFamily 文档。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
以下是 WakefieldFamily 文档。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个示例。
以下是将返回每个家庭的 family name 和 address 的查询。
SELECT f.id AS FamilyName, [f.location.city, f.location.county, f.location.state] AS Address FROM Families f
如您所见,city、county 和 state 字段包含在方括号中,这将创建一个数组,并且此数组命名为 Address。执行上述查询时,会产生以下输出。
[ { "FamilyName": "WakefieldFamily", "Address": [ "NY", "Manhattan", "NY" ] }, { "FamilyName": "SmithFamily", "Address": [ "Forest Hills", "Queens", "NY" ] }, { "FamilyName": "AndersenFamily", "Address": [ "Seattle", "King", "WA" ] } ]
在上述输出中,city、county 和 state 信息已添加到 Address 数组中。
DocumentDB SQL - 标量表达式
在 DocumentDB SQL 中,SELECT 子句还支持标量表达式,如常量、算术表达式、逻辑表达式等。通常,很少使用标量查询,因为它们实际上并不查询集合中的文档,它们只是计算表达式。但是,使用标量表达式查询来学习基础知识、如何使用表达式和在查询中塑造 JSON 仍然很有帮助,这些概念直接适用于您将在集合中针对文档运行的实际查询。
让我们来看一个包含多个标量查询的示例。
在查询资源管理器中,仅选择要执行的文本并单击“运行”。让我们先运行第一个。
SELECT "Hello"
执行上述查询时,会产生以下输出。
[ { "$1": "Hello" } ]
此输出可能看起来有点令人困惑,所以让我们分解一下。
首先,正如我们在最后一个演示中看到的,查询结果始终包含在方括号中,因为它们作为 JSON 数组返回,即使来自像这样只返回单个文档的标量表达式查询的结果也是如此。
我们有一个包含一个文档的数组,并且该文档在其内有一个属性,用于 SELECT 语句中的单个表达式。
SELECT 语句没有为此属性提供名称,因此 DocumentDB 使用 $1 自动生成一个。
这通常不是我们想要的,这就是为什么我们可以使用 AS 为查询中的表达式设置别名,这会按照您希望的方式设置生成文档中的属性名称,在本例中为 word。
SELECT "Hello" AS word
执行上述查询时,会产生以下输出。
[ { "word": "Hello" } ]
类似地,以下是另一个简单的查询。
SELECT ((2 + 11 % 7)-2)/3
查询检索以下输出。
[ { "$1": 1.3333333333333333 } ]
让我们来看另一个塑造嵌套数组和嵌入对象的示例。
SELECT { "words1": ["Hello", "World"], "words2": ["How", "Are", "You?"] } AS allWords
执行上述查询时,会产生以下输出。
[ { "allWords": { "words1": [ "Hello", "World" ], "words2": [ "How", "Are", "You?" ] } } ]
DocumentDB SQL - 参数化
在关系数据库中,参数化查询是指在其中使用占位符作为参数并在线程执行时提供参数值的查询。DocumentDB 也支持参数化查询,并且参数化查询中的参数可以用熟悉的 @ 符号表示。使用参数化查询的最重要原因是避免 SQL 注入攻击。它还可以提供对用户输入的强大处理和转义。
让我们来看一个我们将使用 .Net SDK 的示例。以下是将删除集合的代码。
private async static Task DeleteCollection(DocumentClient client, string collectionId) { Console.WriteLine(); Console.WriteLine(">>> Delete Collection {0} in {1} <<<", collectionId, _database.Id); var query = new SqlQuerySpec { QueryText = "SELECT * FROM c WHERE c.id = @id", Parameters = new SqlParameterCollection { new SqlParameter { Name = "@id", Value = collectionId } } }; DocumentCollection collection = client.CreateDocumentCollectionQuery(database.SelfLink, query).AsEnumerable().First(); await client.DeleteDocumentCollectionAsync(collection.SelfLink); Console.WriteLine("Deleted collection {0} from database {1}", collectionId, _database.Id); }
参数化查询的构造如下所示。
var query = new SqlQuerySpec { QueryText = "SELECT * FROM c WHERE c.id = @id", Parameters = new SqlParameterCollection { new SqlParameter { Name = "@id", Value = collectionId } } };
我们没有对 collectionId 进行硬编码,因此此方法可用于删除任何集合。我们可以使用“@”符号作为参数名称的前缀,类似于 SQL Server。
在上面的示例中,我们正在按 Id 查询特定集合,其中 Id 参数在此 SqlParameterCollection 中定义,并分配给此 SqlQuerySpec 的参数属性。然后,SDK 会完成构建 DocumentDB 的最终查询字符串的工作,并将 collectionId 嵌入到其中。我们运行查询,然后使用其 SelfLink 删除集合。
以下是 CreateDocumentClient 任务的实现。
private static async Task CreateDocumentClient() { // Create a new instance of the DocumentClient using (var client = new DocumentClient(new Uri(EndpointUrl), AuthorizationKey)) { database = client.CreateDatabaseQuery("SELECT * FROM c WHERE c.id = 'earthquake'").AsEnumerable().First(); collection = client.CreateDocumentCollectionQuery(database.CollectionsLink, "SELECT * FROM c WHERE c.id = 'myfirstdb'").AsEnumerable().First(); await DeleteCollection(client, "MyCollection1"); await DeleteCollection(client, "MyCollection2"); } }
执行代码时,会产生以下输出。
**** Delete Collection MyCollection1 in mydb **** Deleted collection MyCollection1 from database myfirstdb **** Delete Collection MyCollection2 in mydb **** Deleted collection MyCollection2 from database myfirstdb
让我们来看另一个示例。我们可以编写一个查询,将姓氏和地址州作为参数,然后根据用户输入针对姓氏和 location.state 的各种值执行它。
SELECT * FROM Families f WHERE f.lastName = @lastName AND f.location.state = @addressState
然后,此请求可以作为参数化的 JSON 查询发送到 DocumentDB,如下面的代码所示。
{ "query": "SELECT * FROM Families f WHERE f.lastName = @lastName AND f.location.state = @addressState", "parameters": [ {"name": "@lastName", "value": "Wakefield"}, {"name": "@addressState", "value": "NY"}, ] }
DocumentDB SQL - 内置函数
DocumentDB 支持大量用于常用操作的内置函数,这些函数可以在查询内使用。有很多函数用于执行数学计算,以及在处理不同模式时非常有用的类型检查函数。这些函数可以测试某个属性是否存在,如果存在,则测试它是否为数字或字符串、布尔值或对象。
我们还获得了这些用于解析和操作字符串的便捷函数,以及一些用于处理数组的函数,允许您执行诸如连接数组和测试数组是否包含特定元素之类的操作。
以下是不同类型的内置函数 -
序号 | 内置函数和说明 |
---|---|
1 | 数学函数
数学函数执行计算,通常基于作为参数提供的输入值,并返回数值。 |
2 | 类型检查函数
类型检查函数允许您检查 SQL 查询中表达式的类型。 |
3 | 字符串函数
字符串函数对字符串输入值执行操作,并返回字符串、数值或布尔值。 |
4 | 数组函数
数组函数对数组输入值执行操作,并以数值、布尔值或数组值的格式返回。 |
5 | 空间函数
DocumentDB 还支持用于地理空间查询的开放地理空间联盟 (OGC) 内置函数。 |
DocumentDB SQL - Linq to SQL 转换
在 DocumentDB 中,我们实际上使用 SQL 来查询文档。如果我们正在进行 .NET 开发,还可以使用 LINQ 提供程序,该提供程序可以从 LINQ 查询生成相应的 SQL。
支持的数据类型
在 DocumentDB 中,LINQ 提供程序(包含在 DocumentDB .NET SDK 中)支持所有 JSON 基本类型,如下所示:
- 数值型
- 布尔型
- 字符串型
- 空值
支持的表达式
以下标量表达式在 LINQ 提供程序(包含在 DocumentDB .NET SDK 中)中受支持。
常量值 - 包括基本数据类型的常量值。
属性/数组索引表达式 - 表达式引用对象的属性或数组元素。
算术表达式 - 包括数值和布尔值上的常见算术表达式。
字符串比较表达式 - 包括将字符串值与某个常量字符串值进行比较。
对象/数组创建表达式 - 返回复合值类型或匿名类型或此类对象数组的对象。这些值可以嵌套。
支持的 LINQ 运算符
以下是 LINQ 提供程序(包含在 DocumentDB .NET SDK 中)中支持的 LINQ 运算符列表。
Select - 投影转换为 SQL SELECT,包括对象构造。
Where - 筛选器转换为 SQL WHERE,并支持在 && 、 || 和 ! 与 SQL 运算符之间进行转换。
SelectMany - 允许将数组展开到 SQL JOIN 子句。可用于链接/嵌套表达式以筛选数组元素。
OrderBy 和 OrderByDescending - 转换为 ORDER BY 升序/降序。
CompareTo - 转换为范围比较。通常用于字符串,因为它们在 .NET 中不可比较。
Take - 转换为 SQL TOP 以限制查询的结果。
数学函数 - 支持从 .NET 的 Abs、Acos、Asin、Atan、Ceiling、Cos、Exp、Floor、Log、Log10、Pow、Round、Sign、Sin、Sqrt、Tan、Truncate 转换为等效的 SQL 内置函数。
字符串函数 - 支持从 .NET 的 Concat、Contains、EndsWith、IndexOf、Count、ToLower、TrimStart、Replace、Reverse、TrimEnd、StartsWith、SubString、ToUpper 转换为等效的 SQL 内置函数。
数组函数 - 支持从 .NET 的 Concat、Contains 和 Count 转换为等效的 SQL 内置函数。
地理空间扩展函数 - 支持从存根方法 Distance、Within、IsValid 和 IsValidDetailed 转换为等效的 SQL 内置函数。
用户定义扩展函数 - 支持从存根方法 UserDefinedFunctionProvider.Invoke 转换为相应的用户定义函数。
其他 - 支持合并和条件运算符的转换。可以根据上下文将 Contains 转换为 String CONTAINS、ARRAY_CONTAINS 或 SQL IN。
让我们来看一个使用 .Net SDK 的示例。以下是我们将在此示例中考虑的三个文档。
新客户 1
{ "name": "New Customer 1", "address": { "addressType": "Main Office", "addressLine1": "123 Main Street", "location": { "city": "Brooklyn", "stateProvinceName": "New York" }, "postalCode": "11229", "countryRegionName": "United States" }, }
新客户 2
{ "name": "New Customer 2", "address": { "addressType": "Main Office", "addressLine1": "678 Main Street", "location": { "city": "London", "stateProvinceName": " London " }, "postalCode": "11229", "countryRegionName": "United Kingdom" }, }
新客户 3
{ "name": "New Customer 3", "address": { "addressType": "Main Office", "addressLine1": "12 Main Street", "location": { "city": "Brooklyn", "stateProvinceName": "New York" }, "postalCode": "11229", "countryRegionName": "United States" }, }
以下是我们使用 LINQ 查询的代码。我们在 q 中定义了一个 LINQ 查询,但只有在我们对其运行 .ToList 时才会执行。
private static void QueryDocumentsWithLinq(DocumentClient client) { Console.WriteLine(); Console.WriteLine("**** Query Documents (LINQ) ****"); Console.WriteLine(); Console.WriteLine("Quering for US customers (LINQ)"); var q = from d in client.CreateDocumentQuery<Customer>(collection.DocumentsLink) where d.Address.CountryRegionName == "United States" select new { Id = d.Id, Name = d.Name, City = d.Address.Location.City }; var documents = q.ToList(); Console.WriteLine("Found {0} US customers", documents.Count); foreach (var document in documents) { var d = document as dynamic; Console.WriteLine(" Id: {0}; Name: {1}; City: {2}", d.Id, d.Name, d.City); } Console.WriteLine(); }
SDK 会将我们的 LINQ 查询转换为 DocumentDB 的 SQL 语法,根据我们的 LINQ 语法生成 SELECT 和 WHERE 子句。
让我们从 CreateDocumentClient 任务调用上述查询。
private static async Task CreateDocumentClient() { // Create a new instance of the DocumentClient using (var client = new DocumentClient(new Uri(EndpointUrl), AuthorizationKey)) { database = client.CreateDatabaseQuery("SELECT * FROM c WHERE c.id = 'myfirstdb'").AsEnumerable().First(); collection = client.CreateDocumentCollectionQuery(database.CollectionsLink, "SELECT * FROM c WHERE c.id = 'MyCollection'").AsEnumerable().First(); QueryDocumentsWithLinq(client); } }
执行上述代码时,会生成以下输出。
**** Query Documents (LINQ) **** Quering for US customers (LINQ) Found 2 US customers Id: 7e9ad4fa-c432-4d1a-b120-58fd7113609f; Name: New Customer 1; City: Brooklyn Id: 34e9873a-94c8-4720-9146-d63fb7840fad; Name: New Customer 1; City: Brooklyn
DocumentDB SQL - JavaScript 集成
如今,JavaScript 无处不在,不仅在浏览器中。DocumentDB 将 JavaScript 视为一种现代的 T-SQL,并支持在数据库引擎内部原生执行 JavaScript 逻辑的事务。DocumentDB 提供了一个编程模型,用于根据存储过程和触发器直接在集合上执行基于 JavaScript 的应用程序逻辑。
让我们来看一个创建简单存储过程的示例。步骤如下:
步骤 1 - 创建一个新的控制台应用程序。
步骤 2 - 从 NuGet 添加 .NET SDK。我们在这里使用 .NET SDK,这意味着我们将编写一些 C# 代码来创建、执行,然后删除我们的存储过程,但存储过程本身是用 JavaScript 编写的。
步骤 3 - 在解决方案资源管理器中右键单击项目。
步骤 4 - 为存储过程添加一个新的 JavaScript 文件,并将其命名为 HelloWorldStoreProce.js
每个存储过程都只是一个 JavaScript 函数,因此我们将创建一个新函数,并且自然地,我们也将此函数命名为 HelloWorldStoreProce。我们根本不需要为函数命名。DocumentDB 将仅通过我们在创建时提供的 Id 来引用此存储过程。
function HelloWorldStoreProce() { var context = getContext(); var response = context.getResponse(); response.setBody('Hello, and welcome to DocumentDB!'); }
所有存储过程所做的就是从上下文获取响应对象并调用其 setBody 方法以将字符串返回给调用方。在 C# 代码中,我们将创建存储过程、执行它,然后删除它。
存储过程的作用域为每个集合,因此我们将需要集合的 SelfLink 来创建存储过程。
步骤 5 - 首先查询 myfirstdb 数据库,然后查询 MyCollection 集合。
创建存储过程就像在 DocumentDB 中创建任何其他资源一样。
private async static Task SimpleStoredProcDemo() { var endpoint = "https://azuredocdbdemo.documents.azure.com:443/"; var masterKey = "BBhjI0gxdVPdDbS4diTjdloJq7Fp4L5RO/StTt6UtEufDM78qM2CtBZWbyVwFPSJIm8AcfDu2O+AfV T+TYUnBQ=="; using (var client = new DocumentClient(new Uri(endpoint), masterKey)) { // Get database Database database = client .CreateDatabaseQuery("SELECT * FROM c WHERE c.id = 'myfirstdb'") .AsEnumerable() .First(); // Get collection DocumentCollection collection = client .CreateDocumentCollectionQuery(database.CollectionsLink, "SELECT * FROM c WHERE c.id = 'MyCollection'") .AsEnumerable() .First(); // Create stored procedure var sprocBody = File.ReadAllText(@"..\..\HelloWorldStoreProce.js"); var sprocDefinition = new StoredProcedure { Id = "HelloWorldStoreProce", Body = sprocBody }; StoredProcedure sproc = await client. CreateStoredProcedureAsync(collection.SelfLink, sprocDefinition); Console.WriteLine("Created stored procedure {0} ({1})", sproc.Id, sproc.ResourceId); // Execute stored procedure var result = await client.ExecuteStoredProcedureAsync(sproc.SelfLink); Console.WriteLine("Executed stored procedure; response = {0}", result.Response); // Delete stored procedure await client.DeleteStoredProcedureAsync(sproc.SelfLink); Console.WriteLine("Deleted stored procedure {0} ({1})", sproc.Id, sproc.ResourceId); } }
步骤 6 - 首先使用新资源的 Id 创建一个定义对象,然后在 DocumentClient 对象上调用其中一个 Create 方法。对于存储过程,定义包括 Id 和您想要发送到服务器的实际 JavaScript 代码。
步骤 7 - 调用 File.ReadAllText 从 JS 文件中提取存储过程代码。
步骤 8 - 将存储过程代码分配给定义对象的 body 属性。
就 DocumentDB 而言,我们在此定义中指定的 Id 是存储过程的名称,无论我们实际将 JavaScript 函数命名为何。
但是,在创建存储过程和其他服务器端对象时,建议我们命名 JavaScript 函数,并且这些函数名称与我们在 DocumentDB 的定义中设置的 Id 相匹配。
步骤 9 - 调用 CreateStoredProcedureAsync,传入 MyCollection 集合的 SelfLink 和存储过程定义。这将创建存储过程和 DocumentDB 为其分配的 ResourceId。
步骤 10 - 调用存储过程。ExecuteStoredProcedureAsync 获取一个类型参数,您将其设置为存储过程返回的值的预期数据类型,如果您希望返回动态对象,则可以简单地将其指定为对象。也就是说,一个在运行时绑定其属性的对象。
在此示例中,我们知道我们的存储过程只是返回一个字符串,因此我们调用 ExecuteStoredProcedureAsync<string>。
以下是 Program.cs 文件的完整实现。
using Microsoft.Azure.Documents; using Microsoft.Azure.Documents.Client; using Microsoft.Azure.Documents.Linq; using System; using System.Collections.Generic; using System.Diagnostics; using System.IO; using System.Linq; using System.Text; using System.Threading.Tasks; namespace DocumentDBStoreProce { class Program { private static void Main(string[] args) { Task.Run(async () => { await SimpleStoredProcDemo(); }).Wait(); } private async static Task SimpleStoredProcDemo() { var endpoint = "https://azuredocdbdemo.documents.azure.com:443/"; var masterKey = "BBhjI0gxdVPdDbS4diTjdloJq7Fp4L5RO/StTt6UtEufDM78qM2CtBZWbyVwFPSJIm8AcfDu2O+AfV T+TYUnBQ=="; using (var client = new DocumentClient(new Uri(endpoint), masterKey)) { // Get database Database database = client .CreateDatabaseQuery("SELECT * FROM c WHERE c.id = 'myfirstdb'") .AsEnumerable() .First(); // Get collection DocumentCollection collection = client .CreateDocumentCollectionQuery(database.CollectionsLink, "SELECT * FROM c WHERE c.id = 'MyCollection'") .AsEnumerable() .First(); // Create stored procedure var sprocBody = File.ReadAllText(@"..\..\HelloWorldStoreProce.js"); var sprocDefinition = new StoredProcedure { Id = "HelloWorldStoreProce", Body = sprocBody }; StoredProcedure sproc = await client .CreateStoredProcedureAsync(collection.SelfLink, sprocDefinition); Console.WriteLine("Created stored procedure {0} ({1})", sproc .Id, sproc.ResourceId); // Execute stored procedure var result = await client .ExecuteStoredProcedureAsync<string>(sproc.SelfLink); Console.WriteLine("Executed stored procedure; response = {0}", result.Response); // Delete stored procedure await client.DeleteStoredProcedureAsync(sproc.SelfLink); Console.WriteLine("Deleted stored procedure {0} ({1})", sproc.Id, sproc.ResourceId); } } } }
执行上述代码时,会生成以下输出。
Created stored procedure HelloWorldStoreProce (Ic8LAMEUVgACAAAAAAAAgA==) Executed stored procedure; response = Hello, and welcome to DocumentDB!
如上述输出所示,response 属性具有存储过程返回的“Hello, and welcome to DocumentDB!”。
DocumentDB SQL - 用户定义函数
DocumentDB SQL 支持用户定义函数 (UDF)。UDF 只是您可以编写的另一种 JavaScript 函数,它们的工作方式与您期望的几乎相同。您可以创建 UDF 来扩展查询语言,并使用您可以在查询中引用的自定义业务逻辑。
DocumentDB SQL 语法已扩展为支持使用这些 UDF 的自定义应用程序逻辑。UDF 可以注册到 DocumentDB,然后作为 SQL 查询的一部分进行引用。
让我们考虑以下三个文档作为此示例。
AndersenFamily 文档如下所示。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
SmithFamily 文档如下所示。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
WakefieldFamily 文档如下所示。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个创建一些简单 UDF 的示例。
以下是 CreateUserDefinedFunctions 的实现。
private async static Task CreateUserDefinedFunctions(DocumentClient client) { Console.WriteLine(); Console.WriteLine("**** Create User Defined Functions ****"); Console.WriteLine(); await CreateUserDefinedFunction(client, "udfRegEx"); }
我们有一个 udfRegEx,在 CreateUserDefinedFunction 中,我们从本地文件获取其 JavaScript 代码。我们为新的 UDF 构造定义对象,并使用集合的 SelfLink 和 udfDefinition 对象调用 CreateUserDefinedFunctionAsync,如下面的代码所示。
private async static Task<UserDefinedFunction> CreateUserDefinedFunction(DocumentClient client, string udfId) { var udfBody = File.ReadAllText(@"..\..\Server\" + udfId + ".js"); var udfDefinition = new UserDefinedFunction { Id = udfId, Body = udfBody }; var result = await client .CreateUserDefinedFunctionAsync(_collection.SelfLink, udfDefinition); var udf = result.Resource; Console.WriteLine("Created user defined function {0}; RID: {1}", udf.Id, udf.ResourceId); return udf; }
我们从结果的 resource 属性中获取新的 UDF 并将其返回给调用方。要显示现有的 UDF,以下是 ViewUserDefinedFunctions 的实现。我们调用 CreateUserDefinedFunctionQuery 并像往常一样循环遍历它们。
private static void ViewUserDefinedFunctions(DocumentClient client) { Console.WriteLine(); Console.WriteLine("**** View UDFs ****"); Console.WriteLine(); var udfs = client .CreateUserDefinedFunctionQuery(_collection.UserDefinedFunctionsLink) .ToList(); foreach (var udf in udfs) { Console.WriteLine("User defined function {0}; RID: {1}", udf.Id, udf.ResourceId); } }
DocumentDB SQL 没有提供用于搜索子字符串或正则表达式的内置函数,因此以下简短的一行代码填补了这一空白,它是一个 JavaScript 函数。
function udfRegEx(input, regex) { return input.match(regex); }
给定第一个参数中的输入字符串,使用 JavaScript 的内置正则表达式支持将第二个参数中的模式匹配字符串传递到 .match 中。我们可以运行子字符串查询以查找 lastName 属性中包含 Andersen 字样的所有存储。
private static void Execute_udfRegEx(DocumentClient client) { var sql = "SELECT c.name FROM c WHERE udf.udfRegEx(c.lastName, 'Andersen') != null"; Console.WriteLine(); Console.WriteLine("Querying for Andersen"); var documents = client.CreateDocumentQuery(_collection.SelfLink, sql).ToList(); Console.WriteLine("Found {0} Andersen:", documents.Count); foreach (var document in documents) { Console.WriteLine("Id: {0}, Name: {1}", document.id, document.lastName); } }
请注意,我们必须使用前缀 udf 限定每个 UDF 引用。我们只需将 SQL 传递到 CreateDocumentQuery,就像任何普通查询一样。最后,让我们从 CreateDocumentClient 任务调用上述查询
private static async Task CreateDocumentClient() { // Create a new instance of the DocumentClient using (var client = new DocumentClient(new Uri(EndpointUrl), AuthorizationKey)){ database = client.CreateDatabaseQuery("SELECT * FROM c WHERE c.id = 'myfirstdb'").AsEnumerable().First(); collection = client.CreateDocumentCollectionQuery(database.CollectionsLink, "SELECT * FROM c WHERE c.id = 'Families'").AsEnumerable().First(); await CreateUserDefinedFunctions(client); ViewUserDefinedFunctions(client); Execute_udfRegEx(client); } }
执行上述代码时,会生成以下输出。
**** Create User Defined Functions **** Created user defined function udfRegEx; RID: kV5oANVXnwAlAAAAAAAAYA== **** View UDFs **** User defined function udfRegEx; RID: kV5oANVXnwAlAAAAAAAAYA== Querying for Andersen Found 1 Andersen: Id: AndersenFamily, Name: Andersen
DocumentDB SQL - 复合 SQL 查询
复合查询 使您能够组合来自现有查询的数据,然后在呈现报表结果之前应用筛选器、聚合等,这些结果显示组合的数据集。复合查询检索现有查询上的多个级别的相关信息,并将组合数据作为单个且扁平化的查询结果呈现。
使用复合查询,您还可以选择:
选择 SQL 剪枝选项以根据用户的属性选择删除不需要的表和字段。
设置 ORDER BY 和 GROUP BY 子句。
将 WHERE 子句设置为复合查询结果集的筛选器。
上述运算符可以组合形成更强大的查询。由于 DocumentDB 支持嵌套集合,因此组合可以连接或嵌套。
让我们考虑以下文档作为此示例。
AndersenFamily 文档如下所示。
{ "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true }
SmithFamily 文档如下所示。
{ "id": "SmithFamily", "parents": [ { "familyName": "Smith", "givenName": "James" }, { "familyName": "Curtis", "givenName": "Helen" } ], "children": [ { "givenName": "Michelle", "gender": "female", "grade": 1 }, { "givenName": "John", "gender": "male", "grade": 7, "pets": [ { "givenName": "Tweetie", "type": "Bird" } ] } ], "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" }, "isRegistered": true }
WakefieldFamily 文档如下所示。
{ "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false }
让我们来看一个连接查询的示例。
以下是将检索第一个孩子 givenName 为 Michelle 的家庭的 id 和位置的查询。
SELECT f.id,f.location FROM Families f WHERE f.children[0].givenName = "Michelle"
执行上述查询时,会产生以下输出。
[ { "id": "SmithFamily", "location": { "state": "NY", "county": "Queens", "city": "Forest Hills" } } ]
让我们再来看一个连接查询的示例。
以下是将返回所有第一个孩子年级大于 3 的文档的查询。
SELECT * FROM Families f WHERE ({grade: f.children[0].grade}.grade > 3)
执行上述查询时,会产生以下输出。
[ { "id": "WakefieldFamily", "parents": [ { "familyName": "Wakefield", "givenName": "Robin" }, { "familyName": "Miller", "givenName": "Ben" } ], "children": [ { "familyName": "Merriam", "givenName": "Jesse", "gender": "female", "grade": 6, "pets": [ { "givenName": "Charlie Brown", "type": "Dog" }, { "givenName": "Tiger", "type": "Cat" }, { "givenName": "Princess", "type": "Cat" } ] }, { "familyName": "Miller", "givenName": "Lisa", "gender": "female", "grade": 3, "pets": [ { "givenName": "Jake", "type": "Snake" } ] } ], "location": { "state": "NY", "county": "Manhattan", "city": "NY" }, "isRegistered": false, "_rid": "Ic8LAJFujgECAAAAAAAAAA==", "_ts": 1450541623, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgECAAAAAAAAAA==/", "_etag": "\"00000500-0000-0000-0000-567582370000\"", "_attachments": "attachments/" }, { "id": "AndersenFamily", "lastName": "Andersen", "parents": [ { "firstName": "Thomas", "relationship": "father" }, { "firstName": "Mary Kay", "relationship": "mother" } ], "children": [ { "firstName": "Henriette Thaulow", "gender": "female", "grade": 5, "pets": [ { "givenName": "Fluffy", "type": "Rabbit" } ] } ], "location": { "state": "WA", "county": "King", "city": "Seattle" }, "isRegistered": true, "_rid": "Ic8LAJFujgEEAAAAAAAAAA==", "_ts": 1450541624, "_self": "dbs/Ic8LAA==/colls/Ic8LAJFujgE=/docs/Ic8LAJFujgEEAAAAAAAAAA==/", "_etag": "\"00000700-0000-0000-0000-567582380000\"", "_attachments": "attachments/" } ]
让我们来看一个嵌套查询的示例。
以下是将迭代所有父母,然后返回 familyName 为 Smith 的文档的查询。
SELECT * FROM p IN Families.parents WHERE p.familyName = "Smith"
执行上述查询时,会产生以下输出。
[ { "familyName": "Smith", "givenName": "James" } ]
让我们再来看一个嵌套查询的示例。
以下是将返回所有 familyName 的查询。
SELECT VALUE p.familyName FROM Families f JOIN p IN f.parents
执行上述查询时,会生成以下输出。
[ "Wakefield", "Miller", "Smith", "Curtis" ]