Loading [MathJax]/jax/element/mml/optable/GreekAndCoptic.js

电力及电气设备效率


功率或电功率

在电路中做功的速率称为电功率。换句话说,单位时间内所做的功称为电功率。用p或P表示。

功率的公式和单位

当电压加在电阻两端时,会引起电流通过它。因此,在单位时间内使电子穿过电阻所做的功称为电功率。

参考上图,

V=Q

(W)=VQ=VIt

由于功率定义为单位时间内所做的功,即

(P)=(W)(t)=VItt

(V=IRI=VR)

P=VI=I2R=V2R

以上三个公式都可用于计算功率。使用哪个公式取决于已知量。

由于功的单位是焦耳,时间的单位是。因此,功率的单位是焦耳/秒瓦特,即

==

因此,如果1 V的电压使1 A的电流流过电路,则该电路消耗的功率为1瓦。

功率的较大单位有千瓦(kW)、兆瓦(MW)吉瓦(GW)

1kW=1000W;1MW=106W=103kW;1GW=109W

有时,功率也用马力(h.p.)来衡量,

             1 马力 (h.p.) = 746 瓦特

Explore our latest online courses and learn new skills at your own pace. Enroll and become a certified expert to boost your career.

功率的表达式

  • 功率在平动系统中的表达式,

==×=×

  • 功率在转动系统中的表达式,如果一个物体以N转/分的速度旋转,作用在其上的扭矩为τ牛顿·米,则,

\mathrm{每分钟所做的功 = 2\pi Nτ\:焦耳}

\mathrm{每秒所做的功 =\frac{2\pi Nτ}{60}焦耳/秒}

因此,

\mathrm{功率(P)=\frac{2\pi Nτ}{60}焦耳/秒\:或\:瓦特}

\mathrm{(∵\:746\:瓦特 = 1 马力 )}

\mathrm{∴\:功率\:(P)=\frac{2\pi Nτ}{60×746}马力}

电气设备的效率

电气设备的效率定义为有用输出功率与输入功率之比,即

\mathrm{效率(\eta)=\frac{有用输出功率(P_{o})}{输入功率(P_{i})}}

由于效率是输出功率和输入功率之比,因此它是一个无量纲量。通常,设备的效率以百分比(%)表示,如

\mathrm{\%\:效率(\eta)=\frac{有用输出功率(P_{o})}{输入功率(P_{i})} × 100 \%}

一些电气设备的效率接近100%。例如电加热器,其中所有输入电能都转换为热能。

低效率的有害影响

低效率的有害影响如下:

  • 设备效率低意味着损失越大,因此大量能量浪费在无用输出上。

  • 无用输出以热量的形式出现,从而提高设备的温度。因此,效率低意味着温度升高显著。运行温度过高的设备更容易出现故障。

  • 由于效率低而产生的热量必须散发掉。因此,散热系统增加了设备的成本和尺寸。

数值示例 - 1

一台电动机在1500转/分的速度下产生60牛米·米的扭矩。计算该电动机以瓦特和马力表示的输出功率。

解答

\mathrm{电动机输出功率,P=\frac{2\pi Nτ}{60}=\frac{2\pi×1500×60}{60}=9420 W}

\mathrm{(∵\:746\:瓦特 = 1 马力 )}

\mathrm{∴p=\frac{功率(瓦特)}{746}=\frac{9420}{746}=12.63 马力}

数值示例 - 2

一台质量为200千克的升降机以10米/秒的速度上升。如果驱动电机的输入功率为21.42千瓦。计算电机的百分比效率。

解答

             升降机的重量,F = mg = 200 × 9.81 = 1962 牛顿

   电动机的输出功率 = 力 × 速度 = 1962 × 10 = 19620 瓦 = 19.62 千瓦

\mathrm{\%\:效率=\frac{电动机输出功率}{电动机输入功率}× 100\:\%\:=\frac{19.62}{21.42}× 100 = 91.59\%}

数值示例 -3

一个100欧姆的电阻器两端电压为120伏。计算电阻器吸收的功率。

解答

电阻器吸收的功率,

\mathrm{p=\frac{V^2}{R}=\frac{(120)^2}{100}=144 W}

更新于: 2021年8月30日

1K+ 浏览量

启动你的 职业生涯

通过完成课程获得认证

开始学习
广告