在Python中评估x、y和z的笛卡尔积上的三维Hermite级数
要在Python中评估x、y和z的笛卡尔积上的三维Hermite级数,可以使用hermite.hermgrid3d(x, y, z, c)方法。该方法返回在x、y和z的笛卡尔积中的点处的三维多项式的值。
参数是x、y、z。三维级数在x、y和z的笛卡尔积中的点处进行评估。如果x、y或z是列表或元组,则首先将其转换为ndarray;否则,保持不变,如果它不是ndarray,则将其视为标量。
参数c是一个系数数组,其系数的顺序使得i、j次项的系数包含在c[i,j]中。如果c的维度大于二维,则其余索引枚举多组系数。如果c的维度小于三维,则会隐式地向其形状追加1使其成为三维。结果的形状将为c.shape[3:] + x.shape + y.shape + z.shape。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite as H
创建一个三维系数数组:
c = np.arange(16).reshape(2,2,4)
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要在Python中评估x、y和z的笛卡尔积上的三维Hermite级数,可以使用hermite.hermgrid3d(x, y, z, c)方法:
print("\nResult...\n",H.hermgrid3d([1,2],[1,2],[1,2],c))
示例
import numpy as np from numpy.polynomial import hermite as H # Create a 3D array of coefficients c = np.arange(16).reshape(2,2,4) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To evaluate a 3-D Hermite series on the Cartesian product of x, y and z, use the hermite.hermgrid3d(x, y, z, c) method in Python print("\nResult...\n",H.hermgrid3d([1,2],[1,2],[1,2],c))
输出
Our Array... [[[ 0 1 2 3] [ 4 5 6 7]] [[ 8 9 10 11] [12 13 14 15]]] Dimensions of our Array... 3 Datatype of our Array object... int64 Shape of our Array object... (2, 2, 4) Result... [[[ 18. 5616.] [ 38. 9832.]] [[ 46. 10304.] [ 90. 17960.]]]
广告