在Python中生成厄米多项式的伪范德蒙德矩阵


要生成厄米多项式的伪范德蒙德矩阵,请在Python NumPy中使用hermite.hermvander2d()。此方法返回伪范德蒙德矩阵。

参数x,y是点坐标数组,形状相同。数据类型将根据元素是否为复数转换为float64或complex128。标量将转换为一维数组。参数deg是最大次数列表,形式为[x_deg, y_deg]。

步骤

首先,导入所需的库:

import numpy as np
from numpy.polynomial import hermite as H

使用numpy.array()方法创建形状相同的点坐标数组:

x = np.array([1, 2])
y = np.array([3, 4])

显示数组:

print("Array1...\n",x)
print("\nArray2...\n",y)

显示数据类型:

print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

检查两个数组的维度:

print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

检查两个数组的形状:

print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

要生成厄米多项式的伪范德蒙德矩阵,请在Python NumPy中使用hermite.hermvander2d():

x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))

示例

import numpy as np
from numpy.polynomial import hermite as H

# Create arrays of point coordinates, all of the same shape using the numpy.array() method
x = np.array([1, 2])
y = np.array([3, 4])

# Display the arrays
print("Array1...\n",x)
print("\nArray2...\n",y)

# Display the datatype
print("\nArray1 datatype...\n",x.dtype)
print("\nArray2 datatype...\n",y.dtype)

# Check the Dimensions of both the arrays
print("\nDimensions of Array1...\n",x.ndim)
print("\nDimensions of Array2...\n",y.ndim)

# Check the Shape of both the arrays
print("\nShape of Array1...\n",x.shape)
print("\nShape of Array2...\n",y.shape)

# To generate a pseudo Vandermonde matrix of the Hermite polynomial, use the hermite.hermvander2d() in Python Numpy
# The method returns the pseudo-Vandermonde matrix.

x_deg, y_deg = 2, 3
print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))

输出

Array1...
   [1 2]

Array2...
   [3 4]

Array1 datatype...
int64

Array2 datatype...
int64

Dimensions of Array1...
1

Dimensions of Array2...
1

Shape of Array1...
(2,)

Shape of Array2...
(2,)

Result...
   [[1.000e+00 6.000e+00 3.400e+01 1.800e+02 2.000e+00 1.200e+01 6.800e+01
    3.600e+02 2.000e+00 1.200e+01 6.800e+01 3.600e+02]
   [1.000e+00 8.000e+00 6.200e+01 4.640e+02 4.000e+00 3.200e+01 2.480e+02
    1.856e+03 1.400e+01 1.120e+02 8.680e+02 6.496e+03]]

更新于:2022年3月7日

89 次浏览

启动您的职业生涯

完成课程获得认证

开始学习
广告