在 Python 中生成厄米特多项式的范德蒙德矩阵,并使用复数点数组
要生成厄米特多项式的范德蒙德矩阵,请在 Python Numpy 中使用 chebyshev.hermvander()。此方法返回伪范德蒙德矩阵。返回矩阵的形状为 x.shape + (deg + 1,),其中最后一个索引是相应厄米特多项式的次数。dtype 将与转换后的 x 相同。
参数 x 返回点数组。dtype 会根据元素是否为复数转换为 float64 或 complex128。如果 x 是标量,则将其转换为一维数组。参数 deg 是结果矩阵的次数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite as H
创建一个数组:
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
显示数组:
print("Our Array...\n",x)
检查维度:
print("\nDimensions of our Array...\n",x.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",x.dtype)
获取形状:
print("\nShape of our Array object...\n",x.shape)
要生成厄米特多项式的范德蒙德矩阵,请使用 chebyshev.hermvander():
print("\nResult...\n",H.hermvander(x, 2))
示例
import numpy as np from numpy.polynomial import hermite as H # Create an array x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j]) # Display the array print("Our Array...\n",x) # Check the Dimensions print("\nDimensions of our Array...\n",x.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",x.dtype) # Get the Shape print("\nShape of our Array object...\n",x.shape) # To generate a Vandermonde matrix of the Hermite polynomial, use the chebyshev.hermvander() in Python Numpy print("\nResult...\n",H.hermvander(x, 2))
输出
Our Array... [-2.+2.j -1.+2.j 0.+2.j 1.+2.j 2.+2.j] Dimensions of our Array... 1 Datatype of our Array object... complex128 Shape of our Array object... (5,) Result... [[ 1. +0.j -4. +4.j -2.-32.j] [ 1. +0.j -2. +4.j -14.-16.j] [ 1. +0.j 0. +4.j -18. +0.j] [ 1. +0.j 2. +4.j -14.+16.j] [ 1. +0.j 4. +4.j -2.+32.j]]
广告