使用Python生成Hermite_e多项式的范德蒙德矩阵,其中包含复数点阵列
要生成Hermite_e多项式的范德蒙德矩阵,请在Python NumPy中使用hermite_e.hermvander()。此方法返回伪范德蒙德矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应Hermite多项式的阶数。dtype将与转换后的x相同。
参数x返回点阵列。根据元素中是否存在复数,dtype将转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是结果矩阵的阶数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite_e as H
创建一个数组:
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要生成Hermite_e多项式的范德蒙德矩阵,请在Python NumPy中使用hermite_e.hermvander():
print("\nResult...\n",H.hermevander(x, 2))
示例
import numpy as np from numpy.polynomial import hermite_e as H # Create an array x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j]) # Display the array print("Our Array...\n",x) # Check the Dimensions print("\nDimensions of our Array...\n",x.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",x.dtype) # Get the Shape print("\nShape of our Array object...\n",x.shape) # To generate a Vandermonde matrix of the Hermite_e polynomial, use the hermite_e.hermvander() in Python Numpy print("\nResult...\n",H.hermevander(x, 2))
输出
Our Array... [-2.+2.j -1.+2.j 0.+2.j 1.+2.j 2.+2.j] Dimensions of our Array... 1 Datatype of our Array object... complex128 Shape of our Array object... (5,) Result... [[ 1.+0.j -2.+2.j -1.-8.j] [ 1.+0.j -1.+2.j -4.-4.j] [ 1.+0.j 0.+2.j -5.+0.j] [ 1.+0.j 1.+2.j -4.+4.j] [ 1.+0.j 2.+2.j -1.+8.j]]
广告