使用Python生成Hermite_e多项式的伪范德蒙德矩阵,其中包含浮点型数组的点坐标
要生成Hermite多项式的伪范德蒙德矩阵,请在Python NumPy中使用hermite_e.hermevander2d()。该方法返回伪范德蒙德矩阵。参数x、y是形状相同的点坐标数组。数据类型将根据是否存在复数元素转换为float64或complex128。标量将转换为一维数组。参数deg是最大次数的列表,形式为[x_deg, y_deg]。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import hermite as H
使用numpy.array()方法创建形状相同的点坐标数组:
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
显示数组:
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型:
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度:
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状:
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成Hermite多项式的伪范德蒙德矩阵,请在Python NumPy中使用hermite_e.hermevander2d():
x_deg, y_deg = 2, 3 print("\nResult...\n",H.hermevander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial import hermite_e as H # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the array print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the array print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Hermite polynomial, use the hermite_e.hermevander2d() in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",H.hermevander2d(x,y, [x_deg, y_deg]))
输出
Array1... [0.1 1.4] Array2... [1.7 2.8] Array1 datatype... float64 Array2 datatype... float64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1.000000e+00 1.700000e+00 1.890000e+00 -1.870000e-01 1.000000e-01 1.700000e-01 1.890000e-01 -1.870000e-02 -9.900000e-01 -1.683000e+00 -1.871100e+00 1.851300e-01] [ 1.000000e+00 2.800000e+00 6.840000e+00 1.355200e+01 1.400000e+00 3.920000e+00 9.576000e+00 1.897280e+01 9.600000e-01 2.688000e+00 6.566400e+00 1.300992e+01]]
广告