使用Python生成Chebyshev多项式的伪Vandermonde矩阵,该矩阵基于浮点型数组的点坐标
要生成Chebyshev多项式的伪Vandermonde矩阵,请在Python NumPy中使用`chebyshev.chebvander()`。该方法返回度数为deg和采样点(x, y)的伪Vandermonde矩阵。参数x、y是点坐标数组,形状相同。数据类型将根据元素是否为复数转换为float64或complex128。标量将转换为一维数组。参数deg是最大度数列表,形式为[x_deg, y_deg]。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import chebyshev as C
使用`numpy.array()`方法创建形状相同的点坐标数组:
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
显示数组:
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型:
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度:
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状:
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成Chebyshev多项式的伪Vandermonde矩阵,请在Python中使用`chebyshev.chebvander()`:
x_deg, y_deg = 2, 3 print("\nResult...\n",C.chebvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial import chebyshev as C # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Chebyshev polynomial, use the chebyshev.chebvander() in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",C.chebvander2d(x,y, [x_deg, y_deg]))
输出
Array1... [0.1 1.4] Array2... [1.7 2.8] Array1 datatype... float64 Array2 datatype... float64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1.0000000e+00 1.7000000e+00 4.7800000e+00 1.4552000e+01 1.0000000e-01 1.7000000e-01 4.7800000e-01 1.4552000e+00 -9.8000000e-01 -1.6660000e+00 -4.6844000e+00 -1.4260960e+01] [ 1.0000000e+00 2.8000000e+00 1.4680000e+01 7.9408000e+01 1.4000000e+00 3.9200000e+00 2.0552000e+01 1.1117120e+02 2.9200000e+00 8.1760000e+00 4.2865600e+01 2.3187136e+02]]
广告