使用Python生成拉盖尔多项式的范德蒙德矩阵,其中包含浮点型数组的点
要生成拉盖尔多项式的伪范德蒙德矩阵,请在Python NumPy中使用laguerre.lagvander()。该方法返回伪范德蒙德矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应拉盖尔多项式的阶数。dtype将与转换后的x相同。
参数x返回点数组。dtype根据元素是否为复数转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是结果矩阵的阶数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import laguerre as L
创建一个数组:
x = np.array([0, 3.5, -1.4, 2.5])
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要生成拉盖尔多项式的伪范德蒙德矩阵,请在Python中使用laguerre.lagvander():
print("\nResult...\n",L.lagvander(x, 2))
示例
import numpy as np from numpy.polynomial import laguerre as L # Create an array x = np.array([0, 3.5, -1.4, 2.5]) # Display the array print("Our Array...\n",x) # Check the Dimensions print("\nDimensions of our Array...\n",x.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",x.dtype) # Get the Shape print("\nShape of our Array object...\n",x.shape) # To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander() in Python Numpy print("\nResult...\n",L.lagvander(x, 2))
输出
Our Array... [ 0. 3.5 -1.4 2.5] Dimensions of our Array... 1 Datatype of our Array object... float64 Shape of our Array object... (4,) Result... [[ 1. 1. 1. ] [ 1. -2.5 0.125] [ 1. 2.4 4.78 ] [ 1. -1.5 -0.875]]
广告