在Python中使用浮点数数组生成Hermite_e多项式的Vandermonde矩阵


要生成Hermite_e多项式的Vandermonde矩阵,请在Python NumPy中使用hermite_e.hermvander()。此方法返回伪Vandermonde矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应Hermite多项式的阶数。dtype将与转换后的x相同。

参数x返回点数组。dtype根据元素是否为复数转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是结果矩阵的阶数。

步骤

首先,导入所需的库:

import numpy as np
from numpy.polynomial import hermite_e as H

创建一个数组:

x = np.array([0, 3.5, -1.4, 2.5])

显示数组:

print("Our Array...\n",c)

检查维度:

print("\nDimensions of our Array...\n",c.ndim)

获取数据类型:

print("\nDatatype of our Array object...\n",c.dtype)

获取形状:

print("\nShape of our Array object...\n",c.shape)

要生成Hermite_e多项式的Vandermonde矩阵,请使用hermite_e.hermvander()方法:

print("\nResult...\n",H.hermevander(x, 2))

示例

import numpy as np
from numpy.polynomial import hermite_e as H

# Create an array
x = np.array([0, 3.5, -1.4, 2.5])

# Display the array
print("Our Array...\n",x)

# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)

# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)

# Get the Shape
print("\nShape of our Array object...\n",x.shape)

# To generate a Vandermonde matrix of the Hermite_e polynomial, use the hermite_e.hermvander() in Python Numpy
print("\nResult...\n",H.hermevander(x, 2))

输出

Our Array...
   [ 0. 3.5 -1.4 2.5]

Dimensions of our Array...
1

Datatype of our Array object...
float64

Shape of our Array object...
(4,)

Result...
   [[ 1. 0.  -1. ]
   [ 1.  3.5 11.25]
   [ 1. -1.4  0.96]
   [ 1.  2.5  5.25]]

更新于:2022年3月9日

浏览量:108

启动你的职业生涯

完成课程获得认证

开始学习
广告