在 Python 中使用浮点数数组作为点坐标生成 Hermite 多项式的伪范德蒙德矩阵
要生成 Hermite 多项式的伪范德蒙德矩阵,可以使用 Python Numpy 中的 hermite.hermvander2d()。该方法返回伪范德蒙德矩阵。参数 x、y 是点坐标数组,所有数组都具有相同的形状。数据类型将根据元素是否为复数转换为 float64 或 complex128。标量将转换为一维数组。参数 deg 是形式为 [x_deg, y_deg] 的最大次数列表。
步骤
首先,导入所需的库 -
import numpy as np from numpy.polynomial import hermite as H
使用 numpy.array() 方法创建所有形状相同的点坐标数组 -
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
显示数组 -
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型 -
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 -
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 -
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成 Hermite 多项式的伪范德蒙德矩阵,可以使用 Python Numpy 中的 hermite.hermvander2d() -
x_deg, y_deg = 2, 3 print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial import hermite as H # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a pseudo Vandermonde matrix of the Hermite polynomial, use the hermite.hermvander2d() in Python Numpy x_deg, y_deg = 2, 3 print("\nResult...\n",H.hermvander2d(x,y, [x_deg, y_deg]))
输出
Array1... [0.1 1.4] Array2... [1.7 2.8] Array1 datatype... float64 Array2 datatype... float64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1.0000000e+00 3.4000000e+00 9.5600000e+00 1.8904000e+01 2.0000000e-01 6.8000000e-01 1.9120000e+00 3.7808000e+00 -1.9600000e+00 -6.6640000e+00 -1.8737600e+01 -3.7051840e+01] [ 1.0000000e+00 5.6000000e+00 2.9360000e+01 1.4201600e+02 2.8000000e+00 1.5680000e+01 8.2208000e+01 3.9764480e+02 5.8400000e+00 3.2704000e+01 1.7146240e+02 8.2937344e+02]]
广告