使用Python生成指定阶数的伪范德蒙德矩阵,其中包含浮点型数组的点坐标
要生成指定阶数的伪范德蒙德矩阵,可以使用Python NumPy中的`polynomial.polyvander2()`。此方法返回指定阶数`deg`和采样点(x, y)的伪范德蒙德矩阵。
参数x和y是点坐标数组,形状相同。数据类型将转换为float64或complex128,具体取决于元素是否为复数。标量将转换为一维数组。参数deg是最大阶数列表,格式为[x_deg, y_deg]。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial.polynomial import polyvander2d
使用numpy.array()方法创建形状相同的点坐标数组:
x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8])
显示数组:
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型:
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度:
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状:
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成指定阶数的伪范德蒙德矩阵,请使用`polynomial.polyvander2()`:
x_deg, y_deg = 2, 3 print("\nResult...\n",polyvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial.polynomial import polyvander2d # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([0.1, 1.4]) y = np.array([1.7, 2.8]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a Pseudo-Vandermonde matrix of given degree, use the polynomial.polyvander2() in Python Numpy # The method returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). x_deg, y_deg = 2, 3 print("\nResult...\n",polyvander2d(x,y, [x_deg, y_deg]))
输出
Array1... [0.1 1.4] Array2... [1.7 2.8] Array1 datatype... float64 Array2 datatype... float64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[1.000000e+00 1.700000e+00 2.890000e+00 4.913000e+00 1.000000e-01 1.700000e-01 2.890000e-01 4.913000e-01 1.000000e-02 1.700000e-02 2.890000e-02 4.913000e-02] [1.000000e+00 2.800000e+00 7.840000e+00 2.195200e+01 1.400000e+00 3.920000e+00 1.097600e+01 3.073280e+01 1.960000e+00 5.488000e+00 1.536640e+01 4.302592e+01]]
广告