在 Python 中生成指定阶数的伪范德蒙德矩阵
要生成指定阶数的伪范德蒙德矩阵,可以使用 Python Numpy 中的 `polynomial.polyvander2()` 函数。该方法返回指定阶数 `deg` 和采样点 (x, y) 的伪范德蒙德矩阵。参数 x 和 y 是点坐标数组,都具有相同的形状。数据类型将根据元素是否为复数转换为 float64 或 complex128。标量将转换为一维数组。参数 deg 是最大阶数的列表,格式为 [x_deg, y_deg]。
步骤
首先,导入所需的库 -
import numpy as np from numpy.polynomial.polynomial import polyvander2d
使用 `numpy.array()` 方法创建具有相同形状的点坐标数组 -
x = np.array([1, 2]) y = np.array([3, 4])
显示数组 -
print("Array1...\n",x) print("\nArray2...\n",y)
显示数据类型 -
print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype)
检查两个数组的维度 -
print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim)
检查两个数组的形状 -
print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape)
要生成指定阶数的伪范德蒙德矩阵,可以使用 Python Numpy 中的 `polynomial.polyvander2()` 函数 -
x_deg, y_deg = 2, 3 print("\nResult...\n",polyvander2d(x,y, [x_deg, y_deg]))
示例
import numpy as np from numpy.polynomial.polynomial import polyvander2d # Create arrays of point coordinates, all of the same shape using the numpy.array() method x = np.array([1, 2]) y = np.array([3, 4]) # Display the arrays print("Array1...\n",x) print("\nArray2...\n",y) # Display the datatype print("\nArray1 datatype...\n",x.dtype) print("\nArray2 datatype...\n",y.dtype) # Check the Dimensions of both the arrays print("\nDimensions of Array1...\n",x.ndim) print("\nDimensions of Array2...\n",y.ndim) # Check the Shape of both the arrays print("\nShape of Array1...\n",x.shape) print("\nShape of Array2...\n",y.shape) # To generate a Pseudo-Vandermonde matrix of given degree, use the polynomial.polyvander2() in Python Numpy # The method returns the pseudo-Vandermonde matrix of degrees deg and sample points (x, y). x_deg, y_deg = 2, 3 print("\nResult...\n",polyvander2d(x,y, [x_deg, y_deg]))
输出
Array1... [1 2] Array2... [3 4] Array1 datatype... int64 Array2 datatype... int64 Dimensions of Array1... 1 Dimensions of Array2... 1 Shape of Array1... (2,) Shape of Array2... (2,) Result... [[ 1. 3. 9. 27. 1. 3. 9. 27. 1. 3. 9. 27.] [ 1. 4. 16. 64. 2. 8. 32. 128. 4. 16. 64. 256.]]
广告