在Python中生成具有复数点阵列的拉盖尔多项式的范德蒙德矩阵
要生成拉盖尔多项式的伪范德蒙德矩阵,请在Python NumPy中使用laguerre.lagvander()。此方法返回伪范德蒙德矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应拉盖尔多项式的阶数。dtype将与转换后的x相同。
参数x返回点数组。dtype根据元素是否为复数转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是结果矩阵的阶数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import laguerre as L
创建一个数组:
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
显示数组:
print("Our Array...\n",c)检查维度:
print("\nDimensions of our Array...\n",c.ndim)获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)获取形状:
print("\nShape of our Array object...\n",c.shape)要生成拉盖尔多项式的伪范德蒙德矩阵,请在Python NumPy中使用laguerre.lagvander():
print("\nResult...\n",L.lagvander(x, 2))示例
import numpy as np
from numpy.polynomial import laguerre as L
# Create an array
x = np.array([-2.+2.j, -1.+2.j, 0.+2.j, 1.+2.j, 2.+2.j])
# Display the array
print("Our Array...\n",x)
# Check the Dimensions
print("\nDimensions of our Array...\n",x.ndim)
# Get the Datatype
print("\nDatatype of our Array object...\n",x.dtype)
# Get the Shape
print("\nShape of our Array object...\n",x.shape)
# To generate a pseudo Vandermonde matrix of the Laguerre polynomial, use the laguerre.lagvander() in Python Numpy
# The method returns the pseudo-Vandermonde matrix. The shape of the returned matrix is x.shape + (deg + 1,), where The last index is the degree of the corresponding Laguerre polynomial. The dtype will be the same as the converted x.
print("\nResult...\n",L.lagvander(x, 2))输出
Our Array... [-2.+2.j -1.+2.j 0.+2.j 1.+2.j 2.+2.j] Dimensions of our Array... 1 Datatype of our Array object... complex128 Shape of our Array object... (5,) Result... [[ 1. +0.j 3. -2.j 5. -8.j] [ 1. +0.j 2. -2.j 1.5-6.j] [ 1. +0.j 1. -2.j -1. -4.j] [ 1. +0.j 0. -2.j -2.5-2.j] [ 1. +0.j -1. -2.j -3. +0.j]]
广告
数据结构
网络
关系数据库管理系统 (RDBMS)
操作系统
Java
iOS
HTML
CSS
Android
Python
C语言编程
C++
C#
MongoDB
MySQL
Javascript
PHP