在Python中生成勒让德级数的范德蒙德矩阵
要生成勒让德多项式的伪范德蒙德矩阵,请在Python NumPy中使用`polynomial.legvander()`方法。
该方法返回伪范德蒙德矩阵。返回矩阵的形状为x.shape + (deg + 1,),其中最后一个索引是相应勒让德多项式的阶数。dtype将与转换后的x相同。
参数x返回点数组。dtype根据元素是否为复数转换为float64或complex128。如果x是标量,则将其转换为一维数组。参数deg是结果矩阵的阶数。
步骤
首先,导入所需的库:
import numpy as np from numpy.polynomial import legendre as L
创建一个数组:
x = np.array([0, 1, -1, 2])
显示数组:
print("Our Array...\n",c)
检查维度:
print("\nDimensions of our Array...\n",c.ndim)
获取数据类型:
print("\nDatatype of our Array object...\n",c.dtype)
获取形状:
print("\nShape of our Array object...\n",c.shape)
要生成勒让德多项式的伪范德蒙德矩阵,请在Python中使用`polynomial.legvander()`方法:
print("\nResult...\n",L.legvander(x, 2))
示例
import numpy as np from numpy.polynomial import legendre as L # Create an array x = np.array([0, 1, -1, 2]) # Display the array print("Our Array...\n",x) # Check the Dimensions print("\nDimensions of our Array...\n",x.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",x.dtype) # Get the Shape print("\nShape of our Array object...\n",x.shape) # To generate a pseudo Vandermonde matrix of the Legendre polynomial, use the polynomial.legvander() method in Python Numpy print("\nResult...\n",L.legvander(x, 2))
输出
Our Array... [ 0 1 -1 2] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (4,) Result... [[ 1. 0. -0.5] [ 1. 1. 1. ] [ 1. -1. 1. ] [ 1. 2. 5.5]]
广告