如果 NumPy 数组没有命名字段,则获取或设置数组的掩码
要获取或设置数组的掩码(如果它没有命名字段),请在 Python NumPy 中使用 **MaskedArray.recordmask**。对于结构化数组,返回一个布尔值 ndarray,其中条目如果所有字段都被掩盖则为 True,否则为 False。
掩码数组是标准 numpy.ndarray 和掩码的组合。掩码要么是 nomask,表示关联数组的任何值都不无效,要么是一个布尔值数组,用于确定关联数组的每个元素的值是否有效。
步骤
首先,导入所需的库 -
import numpy as np import numpy.ma as ma
使用 numpy.arange() 方法创建一个包含整数元素的 4x4 数组 -
arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype)
获取数组的维度 -
print("
Array Dimensions...
",arr.ndim)
获取数组的形状 -
print("
Our Masked Array Shape...
",arr.shape)
获取数组的元素数量 -
print("
Elements in the Masked Array...
",arr.size)
创建一个掩码数组 -
arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked
沿特定轴计算掩码元素的数量 -
print("
The number of masked elements...
",ma.count_masked(arr, axis = 1))
返回掩码数组的掩码 -
print("
The mask of a masked array...
",ma.getmask(arr))
将掩码数组的数据作为 ndarray 返回 -
print("
Data of a masked array as an ndarray...
",ma.getdata(arr))
确定输入是否为掩码数组的实例 -
print("
Whether input is an instance of masked array?
",ma.isMaskedArray(arr))
要获取或设置数组的掩码(如果它没有命名字段),请使用 mMaskedArray.recordmask -
print("
Result...
",arr.recordmask)
示例
# Python ma.MaskedArray - Get or set the mask of the array if it has no named fields import numpy as np import numpy.ma as ma # Creating a 4x4 array with int elements using the numpy.arange() method arr = np.arange(16).reshape((4,4)) print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) print("
Our Array type...
", arr.dtype) # Get the shape of the Array print("
Our Masked Array Shape...
",arr.shape) # Get the number of elements of the Array print("
Elements in the Masked Array...
",arr.size) # Create a masked array arr = ma.array(arr) arr[0, 1] = ma.masked arr[1, 1] = ma.masked arr[2, 1] = ma.masked arr[2, 2] = ma.masked arr[3, 0] = ma.masked arr[3, 2] = ma.masked arr[3, 3] = ma.masked # Count the number of masked elements along specific axis print("
The number of masked elements...
",ma.count_masked(arr, axis = 1)) # Return the mask of a masked array print("
The mask of a masked array...
",ma.getmask(arr)) # Return the data of a masked array as an ndarray print("
Data of a masked array as an ndarray...
",ma.getdata(arr)) # Determine whether input is an instance of masked array print("
Whether input is an instance of masked array?
",ma.isMaskedArray(arr)) # To get or set the mask of the array if it has no named fields, use the mMaskedArray.recordmask in Python Numpy print("
Result...
",arr.recordmask)
输出
Array... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Array type... int64 Array Dimensions... 2 Our Array type... int64 Our Masked Array Shape... (4, 4) Elements in the Masked Array... 16 The number of masked elements... [1 1 2 3] The mask of a masked array... [[False True False False] [False True False False] [False True True False] [ True False True True]] Data of a masked array as an ndarray... [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] Whether input is an instance of masked array? True Result... [[False True False False] [False True False False] [False True True False] [ True False True True]]
广告