使用 Python 外积生成 Mandelbrot 集合计算网格


若给定两个向量,a = [a0, a1, ..., aM] 和 b = [b0, b1, ..., bN],则外积 [1] 如下 −

[[a0*b0 a0*b1 ... a0*bN ]
[a1*b0 .
[ ... .
[aM*b0    aM*bN ]]

为了得到两个数组的外积,在 Python 中使用 numpy.outer() 方法。numpy.ones() 返回一个指定形状和类型的数组,用 1 填充。numpy.linspace() 返回在指定间隔上的均匀间隔的数。

步骤

首先,导入所需的库 −

import numpy as np

实部 −

rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
print("The real part of the complex number...\n",rl)

虚部 −

im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
print("\nThe imaginary part of the complex numbers...\n",rl)

形成一个网格 −

grid = rl + im

示例

import numpy as np

# To get the Outer product of two arrays, use the numpy.outer() method in Python
# The numpy.ones() return a new array of given shape and type, filled with ones.
# The numpy.linspace() returns evenly spaced numbers over a specified interval.
# The real part
rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5))
print("The real part of the complex number...\n",rl)

# The imaginary part
im = np.outer(1j*np.linspace(2, -2, 5), np.ones((5,)))
print("\nThe imaginary part of the complex numbers...\n",rl)

# Forming a grid
grid = rl + im
print("\nDisplaying the grid...\n",grid)

输出

The real part of the complex number...
[[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]]

The imaginary part of the complex numbers...
[[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]
[-2. -1. 0. 1. 2.]]

Displaying the grid...
[[-2.+2.j -1.+2.j 0.+2.j 1.+2.j 2.+2.j]
[-2.+1.j -1.+1.j 0.+1.j 1.+1.j 2.+1.j]
[-2.+0.j -1.+0.j 0.+0.j 1.+0.j 2.+0.j]
[-2.-1.j -1.-1.j 0.-1.j 1.-1.j 2.-1.j]
[-2.-2.j -1.-2.j 0.-2.j 1.-2.j 2.-2.j]]

更新于: 02-Mar-2022

浏览量:166

开始您的 职业生涯

完成课程即可获得认证

开始
广告