NumPy 中一维数组(第一个参数)与二维数组(第二个参数)的矩阵乘积


要查找二维数组和一维数组的矩阵乘积,请在 Python NumPy 中使用 **numpy.matmul()** 方法。如果第一个参数是一维的,则通过在其维度前添加 1 来将其提升为矩阵。矩阵乘法完成后,将删除前置的 1。

返回输入的矩阵乘积。仅当 x1、x2 都是一维向量时,此结果才是标量。out 是一个存储结果的位置。如果提供,它必须具有与签名 (n,k),(k,m)->(n,m) 匹配的形状。如果未提供或为 None,则返回一个新分配的数组。

步骤

首先,导入所需的库 -

import numpy as np

创建一个一维数组和一个二维数组 -

arr1 = np.array([25, 35])
arr2 = np.array([[5, 7], [10, 15]])

显示数组 -

print("Array 1 (Two Dimensional)...
", arr1) print("
Array 2 (One Dimensional)...
", arr2)

获取数组的类型 -

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

获取数组的维度 -

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

获取数组的形状 -

print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)

要查找二维数组和一维数组的矩阵乘积,请在 Python NumPy 中使用 numpy.matmul() 方法。如果第一个参数是一维的,则通过在其维度前添加 1 来将其提升为矩阵。矩阵乘法完成后,将删除前置的 1 -

print("
Result (matrix product)...
",np.matmul(arr1, arr2))

示例

import numpy as np

# Create a 1D and a 2D array
arr1 = np.array([25, 35])
arr2 = np.array([[5, 7], [10, 15]])

# Display the arrays
print("Array 1 (Two Dimensional)...
", arr1) print("
Array 2 (One Dimensional)...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To find the matrix product of a 2D and a 1D array, use the numpy.matmul() method in Python Numpy # If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. # After matrix multiplication the prepended 1 is removed. print("
Result (matrix product)...
",np.matmul(arr1, arr2))

输出

Array 1 (Two Dimensional)...
[25 35]

Array 2 (One Dimensional)...
[[ 5 7]
[10 15]]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
1

Our Array 2 Dimensions...
2

Our Array 1 Shape...
(2,)

Our Array 2 Shape...
(2, 2)

Result (matrix product)...
[475 700]

更新于: 2022-02-07

347 次查看

开启你的 职业生涯

通过完成课程获得认证

立即开始
广告