NumPy中二维数组(第一个参数)和一维数组(第二个参数)的矩阵乘积


要找到二维数组和一维数组的矩阵乘积,可以使用Python NumPy中的**numpy.matmul()**方法。如果第二个参数是一维的,则通过在其维度上附加一个1来将其提升为矩阵。矩阵乘法后,附加的1将被移除。

返回输入的矩阵乘积。只有当x1、x2都是一维向量时,这才是一个标量。out是一个存储结果的位置。如果提供,它必须具有与签名(n,k),(k,m)->(n,m)匹配的形状。如果没有提供或为None,则返回一个新分配的数组。

步骤

首先,导入所需的库:

import numpy as np

创建一个二维数组和一个一维数组:

arr1 = np.array([[5, 7], [10, 15]])
arr2 = np.array([25, 35])

显示数组:

print("Array 1 (Two Dimensional)...
", arr1) print("
Array 2 (One Dimensional)...
", arr2)

获取数组的类型:

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

获取数组的维度:

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

获取数组的形状:

print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)

要找到二维数组和一维数组的矩阵乘积,可以使用Python NumPy中的numpy.matmul()方法。如果第二个参数是一维的,则通过在其维度上附加一个1来将其提升为矩阵。矩阵乘法后,附加的1将被移除:

print("
Result (matrix product)...
",np.matmul(arr1, arr2))

示例

import numpy as np

# Create a 2D and a 1D array
arr1 = np.array([[5, 7], [10, 15]])
arr2 = np.array([25, 35])

# Display the arrays
print("Array 1 (Two Dimensional)...
", arr1) print("
Array 2 (One Dimensional)...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To find the matrix product of a 2D and a 1D array, use the numpy.matmul() method in Python Numpy # If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. # After matrix multiplication the appended 1 is removed. print("
Result (matrix product)...
",np.matmul(arr1, arr2))

输出

Array 1 (Two Dimensional)...
[[ 5 7]
[10 15]]

Array 2 (One Dimensional)...
[25 35]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
2

Our Array 2 Dimensions...
1

Our Array 1 Shape...
(2, 2)

Our Array 2 Shape...
(2,)

Result (matrix product)...
[370 775]

更新于:2022年2月7日

2K+ 次浏览

开启您的职业生涯

完成课程获得认证

开始学习
广告