NumPy中二维数组(第一个参数)和一维数组(第二个参数)的矩阵乘积
要找到二维数组和一维数组的矩阵乘积,可以使用Python NumPy中的**numpy.matmul()**方法。如果第二个参数是一维的,则通过在其维度上附加一个1来将其提升为矩阵。矩阵乘法后,附加的1将被移除。
返回输入的矩阵乘积。只有当x1、x2都是一维向量时,这才是一个标量。out是一个存储结果的位置。如果提供,它必须具有与签名(n,k),(k,m)->(n,m)匹配的形状。如果没有提供或为None,则返回一个新分配的数组。
步骤
首先,导入所需的库:
import numpy as np
创建一个二维数组和一个一维数组:
arr1 = np.array([[5, 7], [10, 15]]) arr2 = np.array([25, 35])
显示数组:
print("Array 1 (Two Dimensional)...
", arr1) print("
Array 2 (One Dimensional)...
", arr2)
获取数组的类型:
print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)
获取数组的维度:
print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)
获取数组的形状:
print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)
要找到二维数组和一维数组的矩阵乘积,可以使用Python NumPy中的numpy.matmul()方法。如果第二个参数是一维的,则通过在其维度上附加一个1来将其提升为矩阵。矩阵乘法后,附加的1将被移除:
print("
Result (matrix product)...
",np.matmul(arr1, arr2))
示例
import numpy as np # Create a 2D and a 1D array arr1 = np.array([[5, 7], [10, 15]]) arr2 = np.array([25, 35]) # Display the arrays print("Array 1 (Two Dimensional)...
", arr1) print("
Array 2 (One Dimensional)...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # To find the matrix product of a 2D and a 1D array, use the numpy.matmul() method in Python Numpy # If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. # After matrix multiplication the appended 1 is removed. print("
Result (matrix product)...
",np.matmul(arr1, arr2))
输出
Array 1 (Two Dimensional)... [[ 5 7] [10 15]] Array 2 (One Dimensional)... [25 35] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 1 Our Array 1 Shape... (2, 2) Our Array 2 Shape... (2,) Result (matrix product)... [370 775]
广告