证明:\( \left(\frac{64}{125}\right)^{\frac{-2}{3}}+\frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}}+\left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)^{0}=\frac{61}{16} \)
已知:
\( \left(\frac{64}{125}\right)^{\frac{-2}{3}}+\frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}}+\left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)^{0}=\frac{61}{16} \)
要求:
我们必须证明\( \left(\frac{64}{125}\right)^{\frac{-2}{3}}+\frac{1}{\left(\frac{256}{625}\right)^{\frac{1}{4}}}+\left(\frac{\sqrt{25}}{\sqrt[3]{64}}\right)^{0}=\frac{61}{16} \).
解答
我们知道:
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
因此:
LHS $=(\frac{64}{125})^{\frac{-2}{3}}+\frac{1}{(\frac{256}{625})^{\frac{1}{4}}}+(\frac{\sqrt{25}}{\sqrt[3]{64}})^0$
$=(\frac{4^{3}}{5^{3}})^{\frac{-2}{3}}+\frac{1}{(\frac{4^{4}}{5^{4}})^{\frac{1}{4}}}+1$
$=\frac{4^{3 \times(\frac{-2}{3})}}{5^{3 \times(\frac{-2}{3})}}+\frac{1}{\frac{4^{4 \times \frac{1}{4}}}{5^{4 \times \frac{1}{4}}}}+1$
$=\frac{4^{-2}}{5^{-2}}+\frac{1}{\frac{4}{5}}+1$
$=\frac{5^2}{4^2}+\frac{5}{4}+1$
$=\frac{25}{16}+\frac{5}{4}+1$
$=\frac{25+20}{16}+1$
$=\frac{45}{16}+1$
$=\frac{45+16}{16}$
$=\frac{61}{16}$
$=$ RHS
证毕。