化简
(i) \( \left\{\left(\frac{1}{3}\right)^{-3}-\left(\frac{1}{2}\right)^{-3}\right\} \div\left(\frac{1}{4}\right)^{-3} \)
(ii) \( \left(3^{2}-2^{2}\right) \times\left(\frac{2}{3}\right)^{-3} \)
(iii) \( \left\{\left(\frac{1}{2}\right)^{-1} \times(-4)^{-1}\right\}^{-1} \)
(iv) \( \left[\left\{\left(\frac{-1}{4}\right)^{2}\right\}^{-2}\right]^{-1} \)
(v) \( \left\{\left(\frac{2}{3}\right)^{2}\right\}^{3} \times\left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times 6^{-1} \)
待办事项
我们需要化简给定的有理数。
解答
我们知道:
$\frac{1}{a^m}=a^{-m}$
$a^{m}=(\frac{1}{a})^{-m}$
$(\frac{a}{b})^m=(\frac{b}{a})^{-m}$
$a^m \times a^n=a^{m+n}$
$(a^m)^n=a^{mn}$
因此:
(i) $[(\frac{1}{3})^{-3}-(\frac{1}{2})^{-3}] \div(\frac{1}{4})^{-3}=(3^{3}-2^{3}) \div(4)^{3}$
$=(27-8) \div 64$
$=\frac{19}{64}$
(ii) $(3^{2}-2^{2}) \times(\frac{2}{3})^{-3}=(3^{2}-2^{2}) \times(\frac{3}{2})^{3}$
$=(9-4) \times \frac{27}{8}$
$=\frac{5\times27}{8}$
$=\frac{135}{8}$
(iii) $((\frac{1}{2})^{-1} \times(-4)^{-1})^{-1}=((2)^{1} \times(\frac{1}{-4})^{1})^{-1}$
$=(2 \times \frac{1}{-4})^{-1}$
$=(\frac{1}{-2})^{-1}$
$=(-2)^1$
$=-2$
=-2
(iv) $[\{(\frac{-1}{4})^{2}\}^{-2}]^{-1}=[(\frac{-1}{4})^{2 \times(-2)}]^{-1}$
$=(\frac{-1}{4})^{-4\times(-1)}$
$=(\frac{-1}{4})^4$
$=\frac{(-1)^4}{4^4}$
$=\frac{1}{256}$
(v) $\{(\frac{2}{3})^{2}\}^{3} \times(\frac{1}{3})^{-4} \times 3^{-1} \times 6^{-1}=(\frac{2}{3})^{2 \times 3} \times(\frac{3}{1})^{4} \times \frac{1}{3^{1}} \times \frac{1}{6^{1}}$
$=(\frac{2}{3})^{6} \times(3)^{4} \times \frac{1}{3} \times \frac{1}{6}$
$=\frac{2 \times 2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3 \times 3} \times 3 \times 3 \times 3 \times 3 \times \frac{1}{3}\times \frac{1}{6}$
$=\frac{64}{3 \times 3 \times 3 \times 6}$
$=\frac{64}{81 \times 2}$
证明:\( \frac{(0.6)^{0}-(0.1)^{-1}}{\left(\frac{3}{8}\right)^{-1}\left(\frac{3}{2}\right)^{3}+\left(-\frac{1}{3}\right)^{-1}}=-\frac{3}{2} \)
开启你的职业生涯
完成课程,获得认证