化简
(i) \( \left(4^{-1} \times 3^{-1}\right)^{2} \)
(ii) \( \left(5^{-1}\div6^{-1}\right)^{3} \)
(iii) \( \left(2^{-1}+3^{-1}\right)^{-1} \)
(iv) \( \left(3^{-1} \times 4^{-1}\right)^{-1} \times 5^{-1} \)
需要完成:
我们需要化简给定的表达式。
解答
我们知道:
$a^{-m}=\frac{1}{a^{m}}$
因此:
(i) $(4^{-1} \times 3^{-1})^{2}=(\frac{1}{4} \times \frac{1}{3})^{2}$
$=(\frac{1}{12})^{2}$
$=\frac{1}{12} \times \frac{1}{12}$
$=\frac{1}{144}$
(ii) $(5^{-1} \div 6^{-1})^{3}=(\frac{1}{5} \div \frac{1}{6})^{3}$
$=(\frac{1}{5} \times \frac{6}{1})^{3}$
$=(\frac{6}{5})^{3}$
$=\frac{6^3}{5^3}$
$=\frac{216}{125}$
(iii) $(2^{-1}+3^{-1})^{-1}=(\frac{1}{2}+\frac{1}{3})^{-1}$
$=(\frac{3+2}{6})^{-1}$
$=(\frac{5}{6})^{-1}$
$=\frac{6}{5}$
(iv) $(3^{-1} \times 4^{-1})^{-1} \times 5^{-1}=(\frac{1}{3} \times \frac{1}{4})^{-1} \times 5^{-1}$
$=(\frac{1}{12})^{-1} \times \frac{1}{5}$
$=(12)^{1} \times \frac{1}{5}$
$=\frac{12}{5}$
广告