如果,求解x的值
(i) \( \left(\frac{1}{4}\right)^{-4} \times\left(\frac{1}{4}\right)^{-8}=\left(\frac{1}{4}\right)^{-4 x} \)
(ii) \( \left(\frac{-1}{2}\right)^{-19}\div\left(\frac{-1}{2}\right)^{8}=\left(\frac{-1}{2}\right)^{-2 x+1} \)
(iii) \( \left(\frac{3}{2}\right)^{-3} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2 x+1} \)
(iv) \( \left(\frac{2}{5}\right)^{-3} \times\left(\frac{2}{5}\right)^{15}=\left(\frac{2}{5}\right)^{2+3 x} \)
(v) \( \left(\frac{5}{4}\right)^{-x}\div\left(\frac{5}{4}\right)^{-4}=\left(\frac{5}{4}\right)^{5} \)
(vi) \( \left(\frac{8}{3}\right)^{2 x+1} \times\left(\frac{8}{3}\right)^{5}=\left(\frac{8}{3}\right)^{x+2} \)
需要完成的任务:
我们需要在每种情况下求解x的值。
解答
我们知道:
$a^m \times a^n=a^{m+n}$
$a^m \div a^n=a^{m-n}$
因此:
(i) \( \left(\frac{1}{4}\right)^{-4} \times\left(\frac{1}{4}\right)^{-8}=\left(\frac{1}{4}\right)^{-4 x} \)
$(\frac{1}{4})^{-4-8}=(\frac{1}{4})^{-4 x}$
$(\frac{1}{4})^{-12}=(\frac{1}{4})^{-4 x}$
比较两边,得到:
$-4 x=-12$
$\Rightarrow x=\frac{-12}{-4}$
$x=3$
x的值为3。
(ii) \( \left(\frac{-1}{2}\right)^{-19}\div\left(\frac{-1}{2}\right)^{8}=\left(\frac{-1}{2}\right)^{-2 x+1} \)
$(\frac{-1}{2})^{-19-8}=(\frac{-1}{2})^{-2 x+1}$
$(\frac{-1}{2})^{-27}=(\frac{-1}{2})^{-2 x+1}$
比较两边,得到:
$-2 x+1=-27$
$-2 x=-27-1$
$-2x=-28$
$x=\frac{-28}{-2}$
$x=14$
x的值为14。
(iii) \( \left(\frac{3}{2}\right)^{-3} \times\left(\frac{3}{2}\right)^{5}=\left(\frac{3}{2}\right)^{2 x+1} \)
$(\frac{3}{2})^{-3+5}=(\frac{3}{2})^{2 x+1}$
$(\frac{3}{2})^{2}=(\frac{3}{2})^{2 x+1}$
比较两边,得到:
$2 x+1=2$
$2 x=2-1$
$2x=1$
$x=\frac{1}{2}$
x的值为$\frac{1}{2}$。
(iv) \( \left(\frac{2}{5}\right)^{-3} \times\left(\frac{2}{5}\right)^{15}=\left(\frac{2}{5}\right)^{2+3 x} \)
$(\frac{2}{5})^{-3+15}=(\frac{2}{5})^{2+3 x}$
$(\frac{2}{5})^{12}=(\frac{2}{5})^{2+3 x}$
比较两边,得到:
$2+3 x=12$
$3 x=12-2$
$3x=10$
$x=\frac{10}{3}$
x的值为$\frac{10}{3}$。
(v) \( \left(\frac{5}{4}\right)^{-x}\div\left(\frac{5}{4}\right)^{-4}=\left(\frac{5}{4}\right)^{5} \)
$(\frac{5}{4})^{-x-(-4)}=(\frac{5}{4})^{5}$
比较两边,得到:
$-x+4=5$
$-x=5-4$
$x=-1$
x的值为-1。
(vi) \( \left(\frac{8}{3}\right)^{2 x+1} \times\left(\frac{8}{3}\right)^{5}=\left(\frac{8}{3}\right)^{x+2} \)
$(\frac{8}{3})^{2 x+1+5}=(\frac{8}{3})^{x+2}$
比较两边,得到:
$2 x+6=x+2$
$2 x-x=2-6$
$x=-4$
x的值为-4。