求下列二项式的积
(i) \( (2 x+y)(2 x+y) \)
(ii) \( (a+2 b)(a-2 b) \)
(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)
(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)
(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)
(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)
(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)
(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
解题思路
我们需要求出给定二项式的积。
解答
我们知道,
$(a + b)^2 = a^2 + 2ab + b^2$
$(a - b)^2 = a^2 - 2ab + b^2$
因此,
(i) $(2 x+y)(2 x+y) = (2 x+y)^2$
$=(2x)^2+2(2x)(y)+(y)^2$
$= 4x^2 + 4xy + y^2$
(ii) $(a+2 b)(a-2 b) =(a)^2-(2b)^2$
$=a^2-4b^2$
(iii) $(a^2+bc)(a^2-bc) =( {a^2})^2-(bc)^2$
$=a^4-b^2c^2$
(iv) $ (\frac{4 x}{5}-\frac{3 y}{4})(\frac{4 x}{5}+\frac{3 y}{4}) = (\frac{4x}{5})^2-(\frac{3y}{4})^2 $
$=\frac{16x^2}{25}-\frac{9y^2}{16}$
(v) $(2x+\frac{3}{y})(2x-\frac{3}{y}) = (2x)^2-(\frac{3}{y})^2$
$=4x^2-\frac{9}{y^2}$
(vi) $(2 a^{3}+b^{3})(2 a^{3}-b^{3}) = (2a^3)^2-(b^3)^2$
$=4a^6-b^6$
(vii) $(x^{4}+\frac{2}{x^2})({x}^4-\frac{2}{x^2}) = ({x}^4)^2-(\frac{2}{x^2})^2$
$=x^8-\frac{4}{x^4}$
(viii) $({x}^3+\frac{1}{x^3})({x}^3-\frac{1}{x^3}) = (x^3)^2-(\frac{1}{x^3})^2$
$=x^6-\frac{1}{x^6}$