将下列二项式的平方写成三项式
(i)(x+2)2
(ii) (8a+3b)2
(iii) (2m+1)2
(iv) (9a+16)2
(v) (x+x22)2
(vi) (x4−y3)2
(vii) (3x−13x)2
(viii) (xy−yx)2
(ix) (3a2−5b4)2
(x) (a2b−bc2)2
(xi) (2a3b+2b3a)2
(xii) (x2−ay)2
需要做的事情
我们需要将给定的二项式的平方写成三项式。
解答
我们知道,
(a+b)2=a2+2ab+b2
(a−b)2=a2−2ab+b2
因此,
(i) (x+2)2=(x)2+2(x)(2)+(x)2
=x2+4x+4
(ii) (8a+3b)2=(8a)2+2(8a)(3b)+(3b)2
=64a2+48ab+9b2
(iii) (2m+1)2=(2m)2+2(2m)(1)+(1)2
=4m2+4m+1
(iv) (9a+16)2=(9a)2+2(9a)(16)+(16)2
=81a2+3a+136
(v) (x+x22)2=(x)2+2(x)(x22)+(x22)2
=x2+x1+2+(x2)24
=x2+x3+x44
(vi) (x4−y3)2=(x4)2−2(x4)(y3)+(y3)2
=x216−xy6+y29
(vii) (3x−13x)2=(3x)2−2(3x)(13x)+(13x)2
=9x2−2+19x2
(viii) (xy−yx)2=(xy)2−2(xy)(yx)+(yx)2
=x2y2−2+y2x2
(ix) (3a2−5b4)2=(3a2)2−2(3a2)(5b4)+(5b4)2
=9a24−15ab4+25b216
(x) (a2b−bc2)2=(a2b)2−2(a2b)(bc2)+(bc2)2
=a4b2−2a2b2c2+b2c4
(xi) (2a3b+2b3a)2=(2a3b)2+2(2a3b)(2b3a)+(2b3a)2
=4a29b2+89+4b29a2
(xii) (x2−ay)2=(x2)2−2(x2)(ay)+(ay)2
=x4−2ax2y+a2y2
广告