简化下列表达式:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
已知
\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
要求
我们需要简化\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \).
解答
我们知道:
$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca$
因此:
$(x+y+z)^{2}+(x+\frac{y}{2}+\frac{z}{3})^{2}-(\frac{x}{2}+\frac{y}{3}+\frac{z}{4})^{2}=(x^{2}+y^{2}+z^{2}+2xy+2yz+2zx)+(x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}+xy+\frac{yz}{3}+\frac{2zx}{3})-(\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}+\frac{xy}{3}+\frac{yz}{6}+\frac{xz}{4})$
$=x^{2}+y^{2}+z^{2}+2xy+2yz+2zx+x^{2}+\frac{y^{2}}{4}+\frac{z^{2}}{9}+xy+\frac{yz}{3}+\frac{2zx}{3}-\frac{x^{2}}{4}-\frac{y^{2}}{9}-\frac{z^{2}}{16}-\frac{xy}{3}-\frac{yz}{6}-\frac{xz}{4}$
$=x^{2}+x^{2}-\frac{x^{2}}{4}+y^{2}+\frac{y^{2}}{4}-\frac{y^{2}}{9}+z^{2}+\frac{z^{2}}{9}-\frac{z^{2}}{16}+2xy+xy-\frac{xy}{3}+2yz+\frac{yz}{3}-\frac{yz}{6}+2zx+\frac{2zx}{3}-\frac{zx}{4}$
$=\frac{7x^{2}}{4}+\frac{41y^{2}}{36}+\frac{151z^{2}}{144}+\frac{8}{3}xy+\frac{13}{6}yz+\frac{29}{12}zx$
$=\frac{7x^2}{4} + \frac{41y^2}{36} + \frac{151z^2}{144} + \frac{8}{3}xy + \frac{13}{6}yz + \frac{29}{12}xz$
因此,\( (x+y+z)^{2}+(x+\frac{y}{2}+\frac{z}{3})^{2}-(\frac{x}{2}+\frac{y}{3}+\frac{z}{4})^{2}=\frac{7x^{2}}{4}+\frac{41y^{2}}{36}+\frac{151z^{2}}{144}+\frac{8}{3}xy+\frac{13}{6}yz+\frac{29}{12}xz \).